CERTIFICATION

NEWPORT NEWS NUCLEAR BWXT-LOS ALAMOS, LLC

NPDES Permit No. NM0030759

2019 UPDATE TO THE SITE DISCHARGE POLLUTION PREVENTION PLAN, REVISION 1

CERTIFICATION STATEMENT OF AUTHORIZATION

“I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.”

Elizabeth Lowes, Program Manager
Environment, Safety and Health
Newport News Nuclear BWXT-Los Alamos, LLC

Date

David Nickless, Acting Director
Office of Quality and Regulatory Compliance
Environmental Management
Los Alamos Field Office

Date
CONTENTS

1.0 Background .. 4
1.1 Individual Permit .. 4
1.2 2019 Update to the Site Discharge Pollution Prevention Plan, Revision 1 6
1.3 Monitoring and Inspection Procedures ... 11
2.0 Site Discharge Pollution Prevention Team .. 11
3.0 Guide to the Updated Information in the 2019 SDPPP Update, Volumes 1–5 13
3.1 Section X.1, Site Descriptions .. 13
3.2 Section X.2, Control Measures ... 15
3.3 Section X.3, Storm Water Monitoring .. 15
3.4 Section X.4, Inspections and Maintenance .. 16
3.5 Section X.5, Compliance Status .. 17
4.0 Public Involvement .. 19
4.1 Website Updates .. 19
4.2 Email Notification ... 20
4.3 Public Meetings .. 20
5.0 Watershed Protection Approach ... 20

Appendixes

Appendix A Acronyms and Glossary .. 22
Appendix B Control Measures ... 28
Appendix C Understanding the Analytical Results Plots.. 47
Appendix D References .. 50
1.0 Background

1.1 Individual Permit

DOE and N3B, collectively the Permittees, have prepared this Update to the Site Discharge Pollution Prevention Plan, Revision 1 (hereafter, the SDPPP Update) for the Individual Storm Water Permit pursuant to the requirements of NPDES Permit No. NM0030759 (hereafter, the Individual Permit or Permit or IP), as authorized by the EPA. The SDPPP Update includes this Overview as well as five volumes addressing the watersheds covered under the IP. All acronyms and abbreviations are included in Appendix A of this Overview and are not defined at first use.

The Individual Permit regulates storm water discharges associated with historical industrial activities from 405 permitted SWMUs and/or AOCs (collectively, “Sites”). The majority of the Sites covered by the Individual Permit are remotely located and are not associated with current industrial activities. Storm water discharges associated with current conventional industrial activities at the Laboratory are excluded from the Individual Permit. The Permit—NPDES No. NM0030759—incorporating the latest modifications became effective on November 1, 2010. The Permit has been administratively continued since November 2015.

LANS and DOE were co-Permittees on the IP from 2010 to April 29, 2018. Through the M&O contract, LANS was delegated responsibility for implementing a program to sustain compliance with the IP. Effective April 30, 2018, N3B replaced LANS as a co-Permittee on the IP. EM-LA provided notice to EPA and NMED of its updated points of contact for the IP and delegations of authority pursuant to 40 CFR Part 122.22 in November 2018. N3B now facilitates implementation of the IP at LANL. EM-LA participates in decisions affecting compliance of the IP and performs contractor oversight of IP field activities to support certification of controls and deliverables to EPA. The Permittees submitted an Individual Permit Renewal Application Package in July 2019. A draft permit was received from EPA on November 27, 2019, and the public comment period is ongoing.

The Sites regulated under this Permit are a subset of the SWMUs and AOCs that are addressed under the June 2016 Consent Order. The Consent Order fulfills the corrective action requirements in §3004(u) and §3008(h) of RCRA for addressing releases of hazardous constituents from SWMUs and AOCs.

A SWMU is a discernible waste management unit from which hazardous waste or hazardous waste constituents may migrate, regardless of whether the unit was intended to manage solid or hazardous waste. SWMUs include any area at a facility at which solid wastes have been routinely and systematically released. An AOC is any area that is not a SWMU that may have had a release of a hazardous waste or hazardous constituent. All SWMUs and AOCs regulated under the Consent Order were evaluated for inclusion in the Permit based on the following criteria: (1) the SWMU/AOC is exposed to storm water (e.g., not capped or subsurface); (2) the SWMU/AOC may contain “significant industrial material” (e.g., not cleaned up or has contamination in place); and (3) industrial materials from the SWMU/AOC could potentially impact waters of the United States.
Sites regulated by the Permit are designated as either “Moderate” or “High Priority.” The two designations have different compliance schedules that apply to the Sites within each designation.

The Individual Permit categorizes a Site as having had an “industrial activity” that creates a “point source discharge” and directs the Permittees to monitor representative storm water discharges from Sites at specified sampling points known as SMAs. An SMA is a single drainage area within a subwatershed and may include more than one Site. Storm water from a Site may drain to multiple subwatersheds and may be associated with multiple SMAs.

The selection of analytical monitoring suites and Site priority designations was based on historical information and any storm water, sediment, and soil data available at the time the Permit application was submitted. The investigation and remediation of SWMUs and AOCs began during the 1990s before the effective date of the Individual Permit (November 1, 2010) and continue concurrently with implementation of the Individual Permit.

The Individual Permit contains nonnumeric technology-based effluent limitations, coupled with a comprehensive, coordinated inspection and monitoring program, to minimize pollutants in the Permittees’ storm water discharges associated with historical industrial activities from specified SWMUs and AOCs. The Permittees are required to implement site-specific control measures (including BMPs) to address the nonnumeric technology-based effluent limits, as necessary, to reduce or minimize pollutants in their storm water discharges to the extent achievable.

The Permit establishes TALs that are equivalent to New Mexico water-quality criteria. These TALs are used as benchmarks to determine the effectiveness of control measures implemented under the Permit. That is, confirmation monitoring sample results for an SMA are compared with applicable TALs. If one or more confirmation monitoring results exceed a TAL, the Permittees must take corrective action through the installation of measures reasonably expected to (1) meet applicable TALs at the Site, (2) achieve total retention of storm water discharges from the Site, or (3) totally eliminate exposure of pollutants to storm water; otherwise, the Permittees must demonstrate the Site has a COC under the Consent Order.

The Individual Permit requires that the Permittees certify to EPA completion of corrective action at each Site by a specific deadline based upon the Site’s status as either a High Priority or Moderate Priority Site. The SMAs monitored in 2019 have the status “baseline monitoring extended” or “enhanced control corrective action monitoring” listed in the compliance status table under each SMA. Only SMAs where enough water was collected or that were functioning properly to collect water for analysis have 2019 analytical data included. In addition, Section 3 of this Overview explains each monitoring status in more detail.

Where the Permittees have installed measures to minimize pollutants in their storm water discharges as required by Part I.A of the Permit at a Site or Sites, but are unable to certify completion of corrective action under Sections E.2(a) through E.2(d) (individually or collectively), the Permittees may submit an alternative compliance request to EPA. If EPA grants the alternative compliance request in whole or in part, it will issue a new individually tailored work plan for the Site or Sites. EPA will also extend the compliance deadline for completion of corrective action, as necessary, to implement this work plan. Corrective action will be accomplished on a case-by-case basis pursuant to an individually tailored compliance schedule determined by EPA. Figure 1 is a “road map” illustrating key activities in the Individual Permit and shows the steps involved in the corrective action process.
1.2 2019 Update to the Site Discharge Pollution Prevention Plan, Revision 1

The SDPPP Update is written for use by the Permittees’ personnel and for review by EPA and the public. Historical industrial activities, storm water monitoring results, and available data regarding the nature and extent of any surface contamination are carried forward from previous SDPPP updates. New information is provided if confirmation monitoring or baseline samples were collected and where additional control measures were installed, retired, repaired, or modified in 2019. Site descriptions are updated based on Consent Order investigation results from the previous year and from planned future work. The SDPPP Update also describes other relevant information, such as monitoring results, inspections and maintenance, and procedures. The report is intended to be a living document that is kept current throughout the year by maintaining records and relevant documents alongside the SDPPP. At the end of each field season, all changes made during the year and any projected for the coming year are incorporated into an update.

Part I.F.4 of the Permit states, “The SDPPP shall be updated annually to fully incorporate all changes made during the previous year and to reflect any changes projected for the following year.”
The original SDPPP was published, submitted to EPA, and placed on the Individual Permit website on April 30, 2011. The following year, on May 1, 2012, the SDPPP was revised and made available on the Permit website. Revision 1 is available at https://ext.em-la.doe.gov/IPS/Home/SDPPP. Since the publication of Revision 1, updates to the SDPPP have been prepared and are made available on the IP website by May 1 of each year. The 2019 SDPPP Update, summarizing relevant information from 2019, together with Revision 1, meets the requirements of Part I.F of the Individual Permit. The reporting format is designed to be web-friendly, making information about a specific Site or SMA easier to find, download, and print. Table 1 provides a crosswalk of SDPPP requirements with the location of the information.
Table 1 SDPPP Requirements

<table>
<thead>
<tr>
<th>Part</th>
<th>Requirement</th>
<th>SDPPP Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.1 (a)</td>
<td>Site Discharge Pollution Prevention Team</td>
<td>2019 Update, Overview, Section 2.0, Site Discharge Pollution Prevention Team</td>
</tr>
<tr>
<td>F.1 (b)</td>
<td>Site Description:</td>
<td>• 2019 Update, Volumes 1 to 5 (V1–5), Section xxx.1*, Site Descriptions</td>
</tr>
<tr>
<td></td>
<td>• historical activities at each Site</td>
<td>• 2019 Update, V1–5, Attachment 3, Precipitation Network</td>
</tr>
<tr>
<td></td>
<td>• precipitation information</td>
<td>• 2019 Update, V1–5, Figure xxx.1; the latest Site map can be found on the IP website—https://ext.em-la.doe.gov/ips/Home/SiteMonitoringAreaMaps.</td>
</tr>
<tr>
<td></td>
<td>• general location and Site maps</td>
<td></td>
</tr>
<tr>
<td>F.1 (c)</td>
<td>Receiving Waters and Watershed</td>
<td>SDPPP V1–5, Rev. 1, Section 300.3</td>
</tr>
<tr>
<td>F.1 (d)</td>
<td>Summary of Pollutant Sources</td>
<td>2019 Update, Overview, Section 3.1.1, Evaluation of Potential Pollutant Sources and 2019 Update, V1–5, Attachment 5, Sampling Requirements and Plan</td>
</tr>
<tr>
<td>F.1 (e)</td>
<td>Description of Control Measures</td>
<td>2019 Update, Overview Appendix B, Control Measure Fact Sheets; 2018 Update, V1–5, Section xxx.2, Control Measures</td>
</tr>
<tr>
<td>F.1 (f)</td>
<td>Schedules for Control Measure Installation</td>
<td>2019 Update, V1–5, Attachment 6, Additional Compliance Status Details for SMAs/Sites in Corrective Action</td>
</tr>
<tr>
<td>F.1 (g)</td>
<td>Monitoring and Inspection Procedures:</td>
<td>(i) The most recent maps showing SMA sampler location for planned sampling are posted on the IP website: https://ext.em-la.doe.gov/ips/Home/SiteMonitoringAreaMaps;</td>
</tr>
<tr>
<td></td>
<td>(i) Locations where samples are to be collected, including coordinates for</td>
<td>2019 Update, V1–5, Attachment 4, Physical Characteristics</td>
</tr>
<tr>
<td></td>
<td>sampling locations and any determination that two or more Sites are</td>
<td>(ii) and (iv) 2019 Update, Overview, Section 1.3, Monitoring and Inspection Procedures at https://ext.em-la.doe.gov/IPS/Home/SDPPP.</td>
</tr>
<tr>
<td></td>
<td>substantially identical</td>
<td>(iii) 2019 Update, V1–5, Sampling Requirements and Plan</td>
</tr>
<tr>
<td></td>
<td>(ii) Person(s) or positions of person(s) responsible for sample collection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(iii) Parameters to be sampled and frequency of sampling for each parameter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(iv) Procedures for gathering storm event data</td>
<td></td>
</tr>
<tr>
<td>F.1 (h)</td>
<td>Signature Requirements</td>
<td>Signatures for the 2019 Update can be found after the cover page of the Overview.</td>
</tr>
<tr>
<td>F.2 (a)</td>
<td>Alongside Documentation: Dates of training sessions, names of employees</td>
<td>2019 Update, Overview, Section 2.0, Site Discharge Pollution Prevention Team</td>
</tr>
<tr>
<td></td>
<td>trained, and subject matter of training</td>
<td></td>
</tr>
<tr>
<td>F.2 (b)</td>
<td>Alongside Documentation: Sampling Reports</td>
<td>• Sampling dates and analytical results: 2019 Update, V1–5, Section xxx.3, Storm Water Monitoring</td>
</tr>
<tr>
<td></td>
<td>(sampling dates, analytical results, outfall locations, name and qualification of technician)</td>
<td>• Outfall locations: 2019 Update, V1–5, Figure xxx.1, and Attachment 4, Physical Characteristics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Name and qualification of technician: N3B’s Electronic Records Management System</td>
</tr>
<tr>
<td>Part I Requirement</td>
<td>SDPPP Section</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Part</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>F.2 (c)</td>
<td>Alongside Documentation: Inspection Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Inspection summary: 2019 Update, V1–5, Section xxx.4, Inspections and Maintenance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Electronic copy of inspection results will be maintained at: N3B’s Electronic Records Management System</td>
<td></td>
</tr>
<tr>
<td>F.2 (d)</td>
<td>Alongside Documentation: An accounting of and explanation of length of time taken to modify or implement measure following discovery of deficiency.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019 Update, V1–5, Section xxx.4, Inspections and Maintenance</td>
<td></td>
</tr>
<tr>
<td>F.2(e)</td>
<td>Documentation of Maintenance: Documentation of maintenance and repairs of control measures, including the date(s) of regular maintenance, date(s) of discovery of areas in need of repair/replacement, and for repairs, the date(s) that control measure(s) returned to full function, and the justification for any extended maintenance/repair schedules.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019 Update, V1–5, Section xxx.4, Inspections and Maintenance</td>
<td></td>
</tr>
<tr>
<td>F.3 (a)</td>
<td>Required Modifications: Construction or change in design, operation, or maintenance at the facility having a significant impact on the discharge, or potential for discharge, of pollutants from the facility.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019 Update, V1–5, Section xxx.4, Inspections and Maintenance</td>
<td></td>
</tr>
<tr>
<td>F.3 (b)</td>
<td>Required Modifications: Findings of deficiencies in control measures during inspections or based on analytical monitoring results.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019 Update, V1–5, Section xxx.4, Inspections and Maintenance</td>
<td></td>
</tr>
<tr>
<td>F.3 (c)</td>
<td>Required Modifications: any change of monitoring requirement or compliance status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2019 Update, V1–5, Attachment 5, Sampling Requirements and Plan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2019 Update, V1–5, Section xxx.5, Compliance Status</td>
<td></td>
</tr>
<tr>
<td>F.3 (d)</td>
<td>Required Modifications: Any change of SMA location</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019 Update, V1–5, Section xxx.1, Site Descriptions, documented in the project map (Figure xxx.1) and in Attachment 4, Physical Characteristics</td>
<td></td>
</tr>
<tr>
<td>F.3 (e)</td>
<td>Required Modifications: Summary of changes from the last year’s SDPPP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019 Update, V1–5, Attachment 1, Amendments</td>
<td></td>
</tr>
<tr>
<td>F.4</td>
<td>SDPPP updated annually to incorporate previous year changes and following year projections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019 Update, V1–5</td>
<td></td>
</tr>
<tr>
<td>F.5</td>
<td>SDPPP Availability: Paper copy of current SDPPP to be immediately available at facility and copy of SDPPP to be made available on public website.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paper copies of SDPPP V1–5, Rev. 1, and the 2019 Update, V1–5, are available in the Program Manager’s Office (Pueblo Complex) and the Public Reading Room (Pojoaque, NM). An electronic version is available on the public website: https://ext.em-la.doe.gov/IPS/Home/SDPPP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The 2019 SDPPP will be available in N3B’s Electronic Records Management System and on the public website: https://ext.em-la.doe.gov/IPS/Home/SDPPP.</td>
<td></td>
</tr>
<tr>
<td>Part</td>
<td>Requirement</td>
<td>SDPPP Section</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>G.1</td>
<td>Erosion Inspection and Reevaluation</td>
<td>Electronic records system will be maintained at: N3B’s Electronic Records Management System</td>
</tr>
<tr>
<td>G.2</td>
<td>Post-Storm Inspections: Adverse weather events shall be documented and maintained with the SDPPP.</td>
<td>2019 Update, V1–5, Section xxx.4, Inspections and Maintenance will be maintained at: N3B’s Electronic Records Management System</td>
</tr>
</tbody>
</table>
| G.3 | Inspection Report | • Inspection summary: 2018 Update, V1–5, Section xxx.4, Inspections and Maintenance
• Electronic copy of inspection results will be maintained at: N3B’s Electronic Records Management System |
| I.1 | Construction Activity Permit associated with Site Remediation: Steps taken to minimize discharges of contaminated runoff during remediation activity shall be included in the SDPPP Update. | 2019 Update, V1–5, Section xxx.4, Inspections and Maintenance; Table xxx-2, Control Measure Inspections during 2018 (Inspection Type is “Remediation Construction Activity”) |
| I.2 | Deletion of Site: Documents to support a request of site deletion must be kept with facility’s SDPPP. | All records associated with Individual Permit activities will be maintained electronically in N3B’s Electronic Records Management System. |
| I.3 | Watershed Protection Approach: EPA encourages the Permittees to voluntarily install watershed-based control measures, such as sediment barriers, to mitigate sediment or storm water runoff reaching the main channels of the canyons and/or the Rio Grande. The Permittees should include information and monitoring data regarding the installation of any such watershed-based control measures in the Annual Report or the SDPPP. | 2019 Update, Overview, Section 5.0, Watershed Protection Approach |
| I.4 | Record Keeping | All records associated with Individual Permit activities will be maintained electronically in N3B’s Electronic Records Management System. |
| I.5 | Reopener: This Permit may be reopened and modified in accordance with 40 CFR § 122.62. Any changes to monitoring and/or control measure requirements made to the Permit in accordance with such a permit modification shall be addressed in the Annual Report and in the annual SDPPP update. | Not yet applicable |

*The xxx refers to the number assigned to each SMA in the Update.

This Overview includes information pertaining to all five watershed-based SDPPP Update volumes and describes the updated information that is new this year. Appendixes to the Overview include acronyms and a glossary of terms used in this report (Appendix A), control measures (Appendix B), a guide to understanding the information presented in the data graphs (Appendix C), and references used throughout the report (Appendix D).
1.3 Monitoring and Inspection Procedures

Individual Permit procedures are reviewed and updated as needed throughout the year. Monitoring and Inspection Procedures that were valid at the end of 2019 and will be used in 2020 (unless a newer version becomes available) are listed below and at https://ext.em-la.doe.gov/IPS/Home/SDPPP.

- N3B-SOP-ER-4004, Installing, Setting Up, and Operating Automated Surface Water Samplers
- N3B-SOP-ER-5004, Inspecting Automated Storm Water Samplers and Retrieving Samples
- N3B-SOP-ER-5002, Post-Storm Inspection of NPDES Individual Permit Storm Water Control Measures and Installation and Maintenance of Non-Engineered Storm Water Control Measures
- N3B-AP-ER-5008, Certifying Individual Permit Storm Water Control Measures
- N3B-GDE-ER-5013, Inspection Guidance for Environmental Programs Watershed, Retention, and No Exposure Controls
- N3B-SOP-ER-4001, Processing Surface Water Samples
- N3B-DI-ER-4010, Desk Instruction for Managing Electronic Precipitation Data for Storm Water Projects

2.0 Site Discharge Pollution Prevention Team

To facilitate the implementation, maintenance, and revision of the SDPPP, a PPT has been established. The PPT is responsible for assisting in developing and revising the SDPPP, maintaining control measures and taking corrective actions for deficiencies, and fulfilling the regulatory requirements of the Individual Permit. The Program Manager is responsible for managing implementation of the IP requirements. The EM-LA Regulatory Compliance Director certifies the required reports and conducts oversight activities.

The PPT consists of qualified personnel who possess the knowledge and skills to perform requirements specific to the Individual Permit. PPT members who perform field activities are able to assess field conditions and activities that impact storm water quality and control measure function. The selection of the PPT field members requires familiarity with Site locations and surrounding operations. Field team members generally have, at a minimum, a Bachelor’s degree and specialty qualifications, such as CISEC, CPESC, or other qualifications necessary to perform the fieldwork required. The specific responsibilities of the PPT are provided in Table 2. Each member of the PPT has access to electronic and paper copies of the Individual Permit and this SDPPP Update.

Table 2 PPT Roles and Responsibilities

<table>
<thead>
<tr>
<th>PPT Title</th>
<th>Functional Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Manager</td>
<td>Responsible for managing implementation of Individual Permit requirements. Responsible for signing the completed inspection work orders that satisfy the requirement for certification of findings by the IP.</td>
</tr>
<tr>
<td>EM-LA Regulatory Compliance Director</td>
<td>Certifies IP-required reports and conducts oversight activities.</td>
</tr>
<tr>
<td>Compliance Team Lead</td>
<td>Responsible for ensuring compliance is met for the Individual Permit Storm Water Program. Responsible for ensuring that Permit-specific training is up to date for all PPT members.</td>
</tr>
<tr>
<td>Corrective Actions Lead</td>
<td>Responsible for coordinating design and implementing corrective action field measures associated with TAL exceedances.</td>
</tr>
<tr>
<td>PPT Title</td>
<td>Functional Responsibility</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Planning and Reporting Lead</td>
<td>Responsible for coordinating and delivering reporting requirements defined by the Individual Permit.</td>
</tr>
<tr>
<td>Monitoring Lead</td>
<td>Responsible for implementing storm water monitoring, coordinating Site inspections, and maintaining control measures to address deficiencies as required by the Permit. Resolves issues related to successful conduct of operations.</td>
</tr>
<tr>
<td>Field Operations Lead</td>
<td>Authorizes all field operations associated with N3B ER Program environmental work, including, but not limited to, fieldwork pertaining to the Individual Permit. Coordinates with the field team members to resolve issues related to successful conduct of operations.</td>
</tr>
<tr>
<td>Subcontractor Manager</td>
<td>Primary contact for subcontractor field team members conducting fieldwork.</td>
</tr>
<tr>
<td>Field Team Member</td>
<td>Responsible for the completion of fieldwork, including site inspections, setup and maintenance of samplers, collection of storm water samples, control measure assessments, control measure maintenance, control measure construction, and construction verifications and/or documentation of work completed.</td>
</tr>
<tr>
<td>Tracking and Reporting Team</td>
<td>Responsible for the generation of fieldwork orders associated with the IP. Maintains work order information in the Maintenance Connection database. Maintains sampling data and Site-related data in the EIM/SWTS. Provides reports generated from databases as needed.</td>
</tr>
<tr>
<td>Precipitation Data Management Team</td>
<td>Responsible for maintaining, verifying, and validating precipitation data in the Hydstra database. Responsible for transmitting validated data to Tracking and Reporting Team.</td>
</tr>
<tr>
<td>Sample Management Office Lead</td>
<td>Responsible for receiving samples from the sample processor and shipping for analysis. Responsible for verifying that sample results are uploaded correctly to EIM and maintaining long-term stewardship of the data.</td>
</tr>
<tr>
<td>Sample Data Steward</td>
<td>Responsible for maintaining the sampling and analysis plan, for quality control once samples are received by the storm water laboratory, and for assigning analytical processing requirements for samples retrieved.</td>
</tr>
<tr>
<td>Sample Processor</td>
<td>Responsible for accepting samples from the Route Lead, processing the samples as required by the sample data steward, and providing custody of the samples until samples are delivered to the N3B Sample Management Office.</td>
</tr>
<tr>
<td>Subcontractor Technical</td>
<td>Primary contact for subcontractor work performed in the field.</td>
</tr>
<tr>
<td>Representative</td>
<td></td>
</tr>
<tr>
<td>Regulatory Documentation Team</td>
<td>Responsible for editing, compositing, obtaining signatures for, and transmitting publications required by the IP.</td>
</tr>
<tr>
<td>Records Management Team Member</td>
<td>Responsible for long-term stewardship of IP records in record database.</td>
</tr>
</tbody>
</table>

Employee training and qualification are essential for effective implementation of the SDPPP and the success of the storm water program. Project personnel receive both formal and informal training in the execution of storm water management at the IP Sites. Formal training is conducted annually before the field season starts, through online training applications and scheduled classroom sessions. Training records are maintained in the Permittees’ online training system. Training records include the dates training occurred and the subject matter of the training conducted. During the field season, daily
tailgate meetings are conducted to inform personnel of work assignments, impending changes, and work-related issues.

3.0 Guide to the Updated Information in the 2019 SDPPP Update, Volumes 1–5

This SDPPP Update maintains the previous five-volume watershed organizational structure for administrative convenience (Table 3). For clarity, SMAs are uniquely and consecutively numbered from 1–250 across the five volumes, as presented in the last column of Table 3.

The 2010 SDPPP provides overviews of each of the five watersheds in section 300.3. These overviews give physical characteristics of the entire watershed. Since the publication of the 2010 SDPPP, no reportable changes have occurred for the watershed-scale information. The 2010 SDPPP can be found on the IP website at https://ext.em-la.doe.gov/IPS/Home/SDPPP.

<table>
<thead>
<tr>
<th>SDPPP Volume</th>
<th>Primary Watershed</th>
<th>Receiving Waters</th>
<th>SMA Numbers in the Contents Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume 1</td>
<td>Los Alamos/Pueblo</td>
<td>Rendija Canyon</td>
<td>1–64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bayo Canyon</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pueblo Canyon</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DP Canyon</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Los Alamos Canyon</td>
<td></td>
</tr>
<tr>
<td>Volume 2</td>
<td>Mortandad/Sandia</td>
<td>Mortandad Canyon</td>
<td>65–128</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ten Site Canyon</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cañada del Buey</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sandia Canyon</td>
<td></td>
</tr>
<tr>
<td>Volume 3</td>
<td>Pajarito</td>
<td>Pajarito Canyon</td>
<td>129–179</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Starmer Canyon</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Twomile Canyon</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threemile Canyon</td>
<td></td>
</tr>
<tr>
<td>Volume 4</td>
<td>Water/Cañon de Valle</td>
<td>Cañon de Valle</td>
<td>180–229</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potrillo Canyon</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water Canyon</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fence Canyon</td>
<td></td>
</tr>
<tr>
<td>Volume 5</td>
<td>Ancho/Chaquehui</td>
<td>Ancho Canyon</td>
<td>230–250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chaquehui Canyon</td>
<td></td>
</tr>
</tbody>
</table>

The Site information, organized by SMA, has been updated as follows.

3.1 Section X.1, Site Descriptions

Site descriptions have not been updated since the submittal of the 2014 SDPPP Update, except to correct grammatical and editorial errors or to update Consent Order activities related to the Site. Changes are captured in redline and provided as part of Attachment 1 in each volume. References used for the Site descriptions are listed in Appendix D of this Overview.

A current project map is located at the end of each SMA chapter. Maps updated throughout the year will be posted on the IP website: https://ext.em-la.doe.gov/ips/Home/SiteMonitoringAreaMaps.
3.1.1 Evaluation of Potential Pollutant Sources

Part I.F.1.(d) of the Individual Permit requires the Permittees to identify potential pollutants of concern associated with “industrial materials or activities” exposed to storm water. Appendix B of the Individual Permit lists the permitted Site Monitoring Requirements for each SMA/Site. As indicated in Part I.D. of the Permit, “pollutants of concern to be monitored are specified in Appendix B.” The identification of pollutants of concern listed in Appendix B does not indicate whether the pollutant is associated with historical industrial materials managed at the Site or with potential releases at the Site. With the exception of ceasing monitoring for constituents where monitoring samples did not exceed TALs, a Permit modification or renewal is required to remove or add specific monitoring requirements from Appendix B. All other additions or subtractions of constituents from the list of potential pollutants of concern discussed in this section do not change the Appendix B monitoring requirements of the current administratively continued Permit.

At the request of the EPA, the Permit renewal process and the initial SIP process described in the following paragraphs are being used to develop a more Site-specific monitoring list. From 2016 to 2019, the Permittees and NMED-SWQB conducted initial SIP reviews of all SWMUs and AOCs listed on the Permit. All available SWMU/AOC Site knowledge was reviewed to determine appropriate Site monitoring constituents and monitoring locations and was included (unless otherwise modified by the EPA) in EPA’s 2019 draft IP renewal. This process determined the list of potential pollutants of concern. Site knowledge under the SIP includes, but is not limited to, Site-related historical information that may include past environmental investigation information, engineering drawings, and validated soil and storm water sampling data. These reviews included field visits and occurred in coordination with LANS, DOE EM-LA, NMED-SWQB, EPA, and NMED’s DOE Oversight Bureau staff.

At SMAs where storm water baseline monitoring samples did not exceed TALs for any constituent, no further monitoring is required for that constituent per Part I.D.4 of the Permit. The Permittees no longer consider these constituents as potential pollutants of concern.

In Volumes 1 through 5 of the SDPPP Update, each TAL exceedance is evaluated to determine whether the TAL exceedance constituent was historically managed at the Site. In many cases, the Permittees have determined that TAL exceedance constituent(s) are not related to historical industrial activities. These constituents should no longer be listed as Appendix B monitoring requirements in the IP renewal, nor should they be considered as potential pollutants of concern. If the constituent that exceeded the TAL was historically managed at the Site, it is retained as a potential pollutant of concern in the IP renewal.

The Site descriptions provide a brief description of Site-associated historical industrial activities from which new pollutants of concern can be identified. For example, a Site description that identifies the Site as an outfall from an HE sump would result in the identification of HE as a potential pollutant of concern. If HE is not currently an Appendix B monitoring requirement, it would be added to the list of potential pollutants of concern in the IP renewal.

If baseline confirmation storm water monitoring samples have not been collected at an SMA, the Sites within that SMA were not evaluated for removal of potential pollutants of concern based on historical industrial activities. For these SMA/Site combinations, the list of potential pollutants of concern remains the same as the Appendix B monitoring requirements (with the exception of removing adjusted gross alpha as a potential pollutant of concern and unless constituents were added based on the Site description).

The Appendix B monitoring list and potential pollutants of concern should match.
3.2 Section X.2, Control Measures

This section in the SDPPP Update describes control measures that have been installed and are currently “active” as of the end of the 2019 calendar year. An active control measures table is provided for each SMA and has been updated to include the enhanced controls constructed in 2019 and to remove any controls that were retired. Control measures may be retired for several reasons. For example, the lifespan of the control type may have expired, or the control measure may have been damaged by wildlife or flooding. In some cases, the retired control measure is replaced with an equal or more effective measure. Storm water run-on, runoff, and erosion potential are assessed before controls are selected and installed at an SMA. The goal is to select and install controls to minimize the potential for erosion when storm water runoff flows across an area; minimize sediment transport; retain transported sediment on-site; and divert, infiltrate, reuse, contain, or otherwise reduce storm water run-on and runoff. A detailed assessment or alternatives analysis is performed for all SMAs that require the installation of enhanced controls. The alternatives-analysis process evaluates the possible corrective action controls, including installation of enhanced controls, total retention, no exposure, and Site remediation. From this alternatives-evaluation process, the most appropriate control(s) is selected, designed, and implemented. Alternatives-analysis documentation is maintained as a record alongside this SDPPP Update. The fact sheets in Appendix B provide sufficient detail to identify and describe the baseline and enhanced control measures constructed at the Sites. Representative photographs of control measures are interspersed throughout the text in the SDPPP Update. Photographs of all baseline and enhanced controls that have been certified are available by following the Construction Certification link on the IP website: https://ext.em-la.doe.gov/IPS/Home/ConstructionCertifications.

Enhanced controls were installed at STRM-SMA-4.2 in 2019 and were certified in January 2020. As of January 1, 2020, enhanced controls are planned at S-SMA-6, CDV-SMA-2.42, P-SMA-2.2, and W-SMA-9.5. Changes in compliance status may result in the need for additional enhanced controls.

3.3 Section X.3, Storm Water Monitoring

The monitoring section in the SDPPP Update describes the storm water data, date of sample collection (if applicable), and comparison with the applicable TALs. For any constituents exceeding the TAL in the most recent monitoring stage for the SMA, a summary of the results from soil and sediment samples collected at the Site during Consent Order or previous investigations is provided and a determination is made of whether or not the TAL exceedance constituent is known to have been associated with industrial materials historically managed at the Site. Screening-level soil data are used when decision-level data are not available to make comparisons. Although screening-level data do not have the same rigorous quality assurance information, their use in this context is appropriate and gives an estimate of what constituents are potentially present in soil at the Site and at what levels. The discussion is organized by Site and analyte. This information will assist the screening process discussed in section 3.5.1 below as the appropriate compliance path selected for the SMA/Site is evaluated.
Also included for all constituents exceeding the TAL at an SMA is a discussion of storm water natural and anthropogenic background concentrations that could be present in run-on and could be a contributing source of the TAL exceedances at the monitoring station.

The storm water monitoring results are plotted on graphs located at the end of each SMA chapter. Data collected for more than 21 total analytes for an individual SMA are presented on separate plots for readability. Each plot has an associated summary table of analytical data. A graphic explaining how to read the plots is presented in Appendix C, Understanding the Analytical Results Plots, and is also available on the IP website: https://ext.em-la.doe.gov/IPS/Home/SDPPP.

There were five sampler moves or adjustments that occurred in 2019 as a result of the SIP process. These five IP samplers were visited in the field by the SIP working group, and as a result, a more representative monitoring location was identified. The justifications for the sampler moves are included on the corresponding SIP maps and can be found under the SIP tab on the IP website.

The sampling plans for 2020 have been updated and are presented in Attachment 5 of each SDPPP Update volume.

3.4 Section X.4, Inspections and Maintenance

Active control measures are inspected as follows: Storm Rain Event (after a rain event at or near the Site that registers 0.25 in. or more of rain within 30 min [the precipitation network for each watershed and rain event data in 2019 are presented in Attachment 3 in each SDPPP Update volume; additionally, met tower precipitation measurements are also used to determine when to perform inspections during times when the full precipitation network is not operating (e.g., during winter months)]; TAL Exceedance (to reevaluate the existing control measures when water sample results are above TALs); Annual Erosion Evaluation (annually for changes of conditions affecting erosion, or otherwise affecting the potential for discharge of pollutants); Remediation Construction Activity (weekly during active remediation construction activities to ensure sediments and runoff controls are working); Significant Event (such as a fire or flood that could significantly impact the control measures and environmental conditions in the affected area[s]); Verification Inspections for Enhanced Controls (verification of the installation of enhanced controls) and Verification Inspections for Active Controls in proximity to Consent Order closure activities at TA-21 (verification to ensure sediment and runoff controls are working); and Pre-SIP Field Walkdown Inspections (performed before SIP group field visits to determine if the current SMA boundary is correct and if the current Site map accurately shows field controls; not currently required by the IP). The control measures inspection table is provided for each SMA.

Maintenance is completed following inspections and is performed during the calendar year to address deficiencies, or potential deficiencies, in control measures as listed in the maintenance table. Actions described in the table include maintenance and/or installation activities that result from findings during
inspections or from recommendations not derived from inspections. These recommendations are often made during planning stages to improve existing conditions at an SMA. This table is provided for each SMA where maintenance was performed. If no maintenance table is included for an SMA, then no maintenance was required to be performed during the calendar year.

The IP regulates approximately 2100 active control measures. Because of the number of active controls, maintenance must be prioritized and scheduled. Following the date of discovery of a potential maintenance item by the field inspection team, the discovery is reviewed by the Permittees’ field team lead to determine the scope of maintenance required. Following the finalization of the maintenance/installation scope, a work order is issued to perform the maintenance with a target date for completion. Typically, the target date is set for 2 to 4 wk from the date of discovery or the date a work order is issued for recommendation not derived from inspections. If the maintenance is performed within 30 d from that date, the table indicates that the maintenance was performed as soon as practicable.

Often maintenance is delayed because of events outside the Permittees’ control, such as site access control restrictions by Laboratory active facilities; severe weather conditions (i.e., lightning stand-downs, red-flag fire weather work restrictions, winter weather); seasonal biological habitat restrictions (i.e., Mexican spotted owl); staffing limitations resulting from Site-wide rain events; N3B transition and stand-up activities; and force majeure events (i.e., government shutdowns). If maintenance is delayed, but occurs within 31 to 60 d, the maintenance table states the maintenance was delayed. The delays in these cases are considered normal and further explanation is not provided in the maintenance table.

If the maintenance exceeds 60 d, the reason for the maintenance delay is noted in the SMA maintenance table. Any maintenance activities that are associated with enhanced controls typically take more than 60 d to complete because of the planning activities that are required as part of corrective action measure selection through the screening and alternative analysis process (see section 3.5.1 for further information).

3.5 Section X.5, Compliance Status

The compliance status table has been updated for 2019. The terms used to track compliance status are defined in Appendix A of this Overview. Five major categories are used to define compliance status. If necessary, additional details are provided in Attachment 6 regarding compliance status.

Baseline Confirmation Complete (BCComp)—All confirmation monitoring results for all pollutants of concern at the SMA are at or below TALs, and corrective action is not required at the Sites. No further sampling is required.

Baseline Monitoring Extended (MEx)—Baseline confirmation monitoring is in progress, and no storm water from a measurable storm event has been collected. There has been no TAL exceedance.

Corrective Action Initiated (CAI)—A sample was collected during confirmation monitoring, and the analytical results show at least one pollutant concentration is above TALs, resulting in initiation of corrective action. Corrective action may include installing enhanced control measures, installing control measures that totally retain storm water, installing control measures that totally eliminate the exposure of pollutants, or receiving a COC (with or without controls) from NMED.

Enhanced Control Corrective Action Monitoring (CAM)—Confirmation monitoring at an SMA is initiated to determine how well enhanced controls are performing. This monitoring occurs after certification that the enhanced control measures have been installed and are complete.
Corrective Action Complete (CAComp)—Completion of corrective action is demonstrated by one of the following:

- Analytical results from enhanced control monitoring show pollutant concentrations for all pollutants of concern at the Site to be at or below applicable TALs,
- Control measures that totally retain and prevent the discharge of storm water have been installed at the Site,
- Control measures that totally eliminate exposure of pollutants to storm water have been installed at the Site, or
- The Site has achieved RCRA “no further action” status or a COC with or without controls from NMED.

3.5.1 Selecting a Compliance Path Following Corrective Action Initiation

If confirmation monitoring sample results demonstrate that one or more TALs are exceeded at a Site, Part I.E requires the Permittees to initiate corrective action. Corrective action consists of one of the following: (i) enhanced control measures to meet the TAL; (ii) total retention of storm water discharges from the Site; (iii) total elimination of exposure of pollutants to storm water at the Site; or (iv) receipt of an NMED-issued COC under the Consent Order.

Part I.E.4 of the Permit categorizes the Sites into “High Priority Sites” and “Moderate Priority Sites” and establishes deadlines for corrective action based on this prioritization.

- If a baseline confirmation monitoring sample was not collected by September 30, 2012, the Permittees are required to certify completion of corrective action at “High Priority Sites” within one (1) year following the first successful confirmation sampling event.
- Permittees are required to certify completion of corrective action at “Moderate Priority Sites” within five (5) years of the effective date of the Permit (which is November 2015).

The Permittees have been granted administrative continuance because the EPA did not renew the IP before its expiration date. The continuance means Sites listed on the IP are required to continue to comply with the current IP, even after its expiration, until a final new IP is issued.

A screening procedure has been developed to provide the IP team with a process for evaluating existing information pertaining to the Site(s) and the associated SMA(s) and for recommending appropriate corrective action measure(s). This screening requires evaluating available storm water, soil, tuff, and sediment data (site-specific and regional); physical knowledge of the Site(s), operating history of the Site(s), and the status of the Site(s) under the Consent Order; and any proposed LANL infrastructure or other facility improvements. Based on this evaluation, a determination is made as to whether the Site is a likely or unlikely source of the TAL exceedance to determine if additional storm water controls would be effective in reducing Site-related constituents that contribute to the TAL exceedance.

If the Site is determined to be an unlikely source of the TAL exceedance and the Permittees are unable to certify completion of corrective action under Parts I.E.2(a) through (d), individually or collectively, the screening process may result in a recommendation that an alternative compliance request be submitted to EPA. The alternative compliance request presents the evidence for why the Site or Sites are not a source of the TAL exceedance. If the Site or Sites are determined to be a likely or potential source of the TAL exceedance, the Site or Sites are recommended to undergo alternatives analysis. The alternatives-analysis process evaluates the possible corrective action controls, including installation of enhanced...
controls, total retention, no exposure, and Site remediation. From this alternatives-evaluation process, the most appropriate control(s) is selected, designed, and implemented.

In Attachment 6 of each SDPPP Update volume, the Permittees provide updated information regarding the planned compliance path for each SMA/Site in corrective action where corrective action has not yet been completed and the path has changes from the previous year. In addition, information is provided to explain any delays that have occurred in completing corrective action planned. In 2019, all SMAs regulated under the IP were in compliance.

4.0 Public Involvement

4.1 Website Updates

The website structure is designed to make IP documents easy to locate. The major links from the header section of the home page (https://ext.em-la.doe.gov/ips/) are as follows:

- **SDPPP**—provides links to archived SDPPPs and updates (years 2010–2018), and monitoring and inspection procedures currently used by the PPT.
- **SITE MONITORING AREA Maps**—provides a direct link to each project map; maps are organized by SDPPP volume and updated when any change is made.
- **REPORTS**—provides links to the Annual Reports, Compliance Status Reports, and the TAL Exceedance Reports.
- **ALTERNATIVE COMPLIANCE**—provides links to the EPA submittal letter and alternative compliance package, provides links to underlying technical studies, and provides a placeholder for public comments and the Permittees’ response to be submitted to EPA.
- **MISCELLANEOUS EPA SUBMITTALS**—provides links to letters submitted to EPA regarding force majeure, boundary changes, requests to extend the Permit renewal application deadline, requests to delete Sites from the permit, and sample results after no exposure.
- **PUBLIC MEETINGS**—provides links to the agenda, presentations, and posters for all meetings held to date.
- **RENEWAL APPLICATION**—provides copies of the documentation related to the IP renewal process.
- **CONSTRUCTION CERTIFICATIONS**—provides links to the certification letters submitted to EPA following construction of enhanced controls and baseline controls and analytical results following construction certification.
- **CORRECTIVE ACTION**—provides links to letters submitted to EPA that certify analytical results below TALs, total retention construction, construction to eliminate exposure, and COCs received from NMED under the Consent Order.
- **SAMPLING IMPLEMENTATION PLAN**—provides links to the Site/SMA maps that have sampler location evaluation completed as part of the SIP process.
4.2 Email Notification

The subscribe function to receive email notifications is located at https://ext.em-la.doe.gov/ips/.

A “Subscribe” link is available on the IP website, in the right column, which allows anyone with an email address to sign up to receive email updates about compliance with the Individual Permit. The public can also ask questions of the IP team from the link under “Get Expertise” in the right column.

4.3 Public Meetings

Public meetings are announced through the email notification process and in local newspapers.

The agenda and presentation notes for meetings held in 2019 are available on the Individual Permit website at https://ext.em-la.doe.gov/IPS/Home/PublicMeetings.

5.0 Watershed Protection Approach

Storm water controls have been installed within each watershed where SMAs exist. These controls have been installed under a variety of programs, including, but not limited to, the Consent Order, Multi-Sector General Permit, Construction General Permit, NPDES outfall permit, EISA storm water guidance, post-fire runoff protection measures, flood mitigation, and general “good-housekeeping” practices. As a whole, these storm water controls prevent erosion and reduce sediment discharge in the watershed. Each year, additional storm water mitigation measures are being evaluated and installed throughout the Laboratory.

Under the Consent Order, some of the Permittees’ largest sediment transport mitigations have been installed in several watersheds, including in Sandia, Mortandad, Los Alamos, Ten Site, and Pueblo Canyons. The goal is to reduce the transport of sediment through a variety of means, including reducing the potentially erosive nature of storm water runoff, enhancing deposition of sediment, and reducing or eliminating access of contaminated sediments to flood erosion. The specific mitigations include the DP Canyon grade-control structure and associated wetlands; two Pueblo Canyon grade-control structures, willow planting, wetlands, and erosion-control measures; the Los Alamos Canyon low-head weir and associated sediment-retention basins; the Mortandad Canyon sediment-retention basins (which are also IP baseline controls that have undergone significant upgrades from initial baseline control status); the Ten Site Canyon grade-control structure; and the Sandia Canyon grade-control structure and associated wetlands. In 2019, these installations were inspected biannually and after a storm water runoff flow event(s) of greater than 50 cfs as measured at the nearest upstream and/or downstream gaging station to the structure. Maintenance is conducted to ensure these installations are working properly. Maintenance includes debris removal and minor/major repairs to structure to maintain function. Sediment, storm water, vegetation, and geomorphic monitoring is conducted in these watersheds to evaluate the effectiveness of the mitigations.
EM2020-0017

NPDES Permit No. NM003079, May 1, 2020

OVERVIEW

Pueblo Canyon grade-control structure
Appendix A
Acronyms and Glossary

All acronyms and abbreviations in the Overview and Volumes 1 through 5 of this report are included in this list and are not defined at first use in the Overview and in each volume.

Acronyms

ACA accelerated corrective action
AEA Atomic Energy Act
AOC area of concern
AST aboveground storage tank
ATAL average target action level
B additional baseline control measure
BCComp baseline confirmation complete
BFM bonded-fiber matrix
bgs below ground surface
BMP best management practice
BTV background threshold value
BV background value
CAComp corrective action complete
CAI corrective action initiated
CAM enhanced control corrective action monitoring
CB certified baseline control measure
CCN change control notice
CEARP Comprehensive Environmental Assessment and Response Program
CFR Code of Federal Regulations
CISEC Certified Inspector of Sediment and Erosion Control
CME corrective measures evaluation
CMP corrugated metal pipe
CMR Chemistry and Metallurgy Research
COC certificate of completion
Consent Order Compliance Order on Consent
COPC chemical of potential concern
County Los Alamos County
CPESC Certified Professional in Erosion and Sediment Control
cpm counts per minute
CWA Clean Water Act
CWWTP Central Wastewater Treatment Plant
Appendix A, Acronyms and Glossary (continued)

Acronyms (continued)

D&D decontamination and decommissioning
DL detectable level
DOE Department of Energy (U.S.)
DU depleted uranium
EC enhanced control
ECB erosion-control blanket
EIM Environmental Information Management (LANL database)
EISA Energy Independence and Security Act
EM electromagnetic
EM Environmental Management
EM-LA Environmental Management Los Alamos Field Office (DOE)
EPA Environmental Protection Agency (U.S.)
EQL estimated quantitation limit
ER Project Environmental Restoration Project
ESH Environment, Safety, and Health (Directorate)
ET evapotranspiration
FFCA Federal Facility Compliance Agreement
FGM flexible-growth medium
FV fallout value
FY fiscal year
GPR ground-penetrating radar
GSA General Services Administration
HE high explosives
HEWTF High Explosive Water Treatment Facility
HDPE high-density polyethylene
HMX octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine
HRL Health Research Laboratory
HVAC heating, ventilation, and air conditioning
HYPO high power
IA interim action
ID identification
IM interim measure
IP National Pollutant Discharge Elimination System (NPDES) Permit No. NM0030759
Laboratory Los Alamos National Laboratory
Appendix A, Acronyms and Glossary (continued)

Acronyms (continued)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANL</td>
<td>Los Alamos National Laboratory</td>
</tr>
<tr>
<td>LANS</td>
<td>Los Alamos National Security, LLC</td>
</tr>
<tr>
<td>LASCP</td>
<td>Los Alamos Site Characterization Program</td>
</tr>
<tr>
<td>LASL</td>
<td>Los Alamos Scientific Laboratory</td>
</tr>
<tr>
<td>LLW</td>
<td>low-level waste</td>
</tr>
<tr>
<td>LOPO</td>
<td>low power</td>
</tr>
<tr>
<td>M&O</td>
<td>management and operating</td>
</tr>
<tr>
<td>MD</td>
<td>munitions debris</td>
</tr>
<tr>
<td>MDA</td>
<td>material disposal area</td>
</tr>
<tr>
<td>MDL</td>
<td>method detection limit</td>
</tr>
<tr>
<td>MEC</td>
<td>munitions and explosives of concern</td>
</tr>
<tr>
<td>MEx</td>
<td>baseline monitoring extended</td>
</tr>
<tr>
<td>mg/L</td>
<td>milligrams per liter</td>
</tr>
<tr>
<td>MLLW</td>
<td>mixed LLW</td>
</tr>
<tr>
<td>MQL</td>
<td>minimum quantification level</td>
</tr>
<tr>
<td>MSGP</td>
<td>Multi-Sector General Permit</td>
</tr>
<tr>
<td>MTAL</td>
<td>maximum target action level</td>
</tr>
<tr>
<td>NES</td>
<td>nuclear environmental site</td>
</tr>
<tr>
<td>NFA</td>
<td>no further action</td>
</tr>
<tr>
<td>ng/L</td>
<td>nanograms per liter</td>
</tr>
<tr>
<td>N3B</td>
<td>Newport News Nuclear BWXT-Los Alamos, LLC</td>
</tr>
<tr>
<td>NMED</td>
<td>New Mexico Environment Department</td>
</tr>
<tr>
<td>NMDOT</td>
<td>New Mexico Department of Transportation</td>
</tr>
<tr>
<td>NMED-SWQB</td>
<td>NMED Surface Water Quality Bureau</td>
</tr>
<tr>
<td>NNSA</td>
<td>National Nuclear Security Administration</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>NSSB</td>
<td>National Security Sciences Building</td>
</tr>
<tr>
<td>OD</td>
<td>open detonation</td>
</tr>
<tr>
<td>OEW</td>
<td>ordinance and explosives waste</td>
</tr>
<tr>
<td>OU</td>
<td>operable unit</td>
</tr>
<tr>
<td>OWR</td>
<td>Omega West Reactor</td>
</tr>
<tr>
<td>PBX</td>
<td>plastic-bonded explosive (potassium butyl xanthate)</td>
</tr>
<tr>
<td>pCi/L</td>
<td>picocuries per liter</td>
</tr>
<tr>
<td>PCB</td>
<td>polychlorinated biphenyl</td>
</tr>
</tbody>
</table>
Appendix A, Acronyms and Glossary (continued)

Acronyms (continued)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permittees</td>
<td>DOE and N3B</td>
</tr>
<tr>
<td>PF</td>
<td>permitted feature</td>
</tr>
<tr>
<td>PHERMEX</td>
<td>Pulsed High-Energy Radiographic Machine Emitting X-Rays</td>
</tr>
<tr>
<td>PPT</td>
<td>Pollution Prevention Team</td>
</tr>
<tr>
<td>PLS</td>
<td>pure live seed</td>
</tr>
<tr>
<td>PQL</td>
<td>practical quantitation limit</td>
</tr>
<tr>
<td>PRS</td>
<td>Potential Release Site (LANL database)</td>
</tr>
<tr>
<td>RADS</td>
<td>radionuclides</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>RFI</td>
<td>RCRA facility investigation</td>
</tr>
<tr>
<td>RG</td>
<td>rain gauge</td>
</tr>
<tr>
<td>RLW</td>
<td>radioactive liquid waste</td>
</tr>
<tr>
<td>RLWTF</td>
<td>Radioactive Liquid Waste Treatment Facility</td>
</tr>
<tr>
<td>SAA</td>
<td>satellite accumulation area</td>
</tr>
<tr>
<td>SAFR</td>
<td>small arms firing range</td>
</tr>
<tr>
<td>SAL</td>
<td>screening action level</td>
</tr>
<tr>
<td>SDPPP</td>
<td>Site Discharge Pollution Prevention Plan</td>
</tr>
<tr>
<td>SIP</td>
<td>sampling implementation plan</td>
</tr>
<tr>
<td>SIR</td>
<td>supplemental investigation report</td>
</tr>
<tr>
<td>SMA</td>
<td>site monitoring area</td>
</tr>
<tr>
<td>SSA</td>
<td>satellite storage area</td>
</tr>
<tr>
<td>SSL</td>
<td>soil screening level</td>
</tr>
<tr>
<td>SUPO</td>
<td>super power</td>
</tr>
<tr>
<td>SVC/SVOC</td>
<td>semivolatile organic compound</td>
</tr>
<tr>
<td>SWMU</td>
<td>solid waste management unit</td>
</tr>
<tr>
<td>SWPP</td>
<td>Storm Water Pollution Prevention (team)</td>
</tr>
<tr>
<td>SWPPP</td>
<td>Storm Water Pollution Prevention Plan</td>
</tr>
<tr>
<td>SWSC</td>
<td>Sanitary Wastewater Systems Consolidation (plant)</td>
</tr>
<tr>
<td>SWTTS</td>
<td>Storm Water Tracking System</td>
</tr>
<tr>
<td>TA</td>
<td>technical area</td>
</tr>
<tr>
<td>TAL</td>
<td>target action level</td>
</tr>
<tr>
<td>TCLP</td>
<td>toxicity characteristic leaching procedure</td>
</tr>
<tr>
<td>TNT</td>
<td>trinitrotoluene(2,4,6-)</td>
</tr>
<tr>
<td>Triad</td>
<td>Triad National Security, LLC</td>
</tr>
</tbody>
</table>
Appendix A, Acronyms and Glossary (continued)

Acronyms (continued)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRM</td>
<td>turf-reinforcement mat</td>
</tr>
<tr>
<td>TRU</td>
<td>transuranic</td>
</tr>
<tr>
<td>TSCA</td>
<td>Toxic Substances Control Act</td>
</tr>
<tr>
<td>TSD</td>
<td>treatment, storage, and disposal (unit)</td>
</tr>
<tr>
<td>TSTA</td>
<td>Tritium Systems Test Assembly</td>
</tr>
<tr>
<td>ULR</td>
<td>unassigned land release</td>
</tr>
<tr>
<td>USDOT</td>
<td>U.S. Department of Transportation</td>
</tr>
<tr>
<td>USFS</td>
<td>U.S. Forest Service</td>
</tr>
<tr>
<td>UTL</td>
<td>upper tolerance limit</td>
</tr>
<tr>
<td>UXO</td>
<td>unexploded ordnance</td>
</tr>
<tr>
<td>µg/L</td>
<td>micrograms per liter</td>
</tr>
<tr>
<td>VCA</td>
<td>voluntary corrective action</td>
</tr>
<tr>
<td>VCM</td>
<td>voluntary corrective measure</td>
</tr>
<tr>
<td>VCP</td>
<td>vitrified clay pipe</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compound</td>
</tr>
<tr>
<td>WBR</td>
<td>Water Boiler Reactor</td>
</tr>
<tr>
<td>WQDB</td>
<td>Water Quality Database</td>
</tr>
<tr>
<td>WWTP</td>
<td>waste water treatment plant</td>
</tr>
</tbody>
</table>
Appendix A, Acronyms and Glossary (continued)

Glossary

Alternative Compliance—Where the Permittees believe they have installed measures to minimize pollutants in storm water discharges but are unable to certify completion of corrective action because of force majeure events, background concentrations of pollutants of concern, site conditions that make it impracticable to install further control measures, or pollutants of concern contributed by sources beyond the Permittees’ control, a Site may be placed into alternative compliance. EPA will determine an individually tailored compliance schedule on a case-by-case basis.

Baseline Confirmation Complete—All confirmation monitoring results for all pollutants of concern at the SMA are at or below TALs, and corrective action is not required at the Sites. No further sampling is required.

Baseline Monitoring Extended—Baseline confirmation monitoring is in progress, and no storm water from a measurable storm event has been collected. There has been no TAL exceedance.

Corrective Action Initiated—A sample was collected during confirmation monitoring, and analytical results show at least one pollutant concentration is above TAL, resulting in initiation of corrective action. Corrective action may include installing enhanced control measures, installing control measures that totally retain storm water, installing control measures that totally eliminate the exposure of pollutants, or receiving a COC (with or without controls) from NMED.

Enhanced Control Corrective Action Monitoring—Confirmation monitoring at an SMA is initiated to determine how well enhanced controls are performing. This monitoring occurs after certification that the enhanced control measures have been installed and are complete.

Corrective Action Complete—Completion of corrective action is demonstrated by one of the following:

- Analytical results from enhanced control monitoring show pollutant concentrations for all pollutants of concern at the Site to be at or below applicable TALs,
- Control measures that totally retain and prevent the discharge of storm water have been installed at the Site,
- Control measures that totally eliminate exposure of pollutants to storm water have been installed at the Site, or
- The Site has achieved RCRA “no further action” status or a COC with or without controls from NMED.
Appendix B
Control Measures

The control measures discussed below have been installed under the IP to prevent run-on to the Site or runoff from the Site. The list is not exhaustive but represents those measures usually installed to prevent erosion and/or to control/capture sediment.

Maintenance and inspection of control measures follow procedures in section 3.4 of the Overview, Inspections and Maintenance.

The table below lists the primary purposes of the types of control measures. Photographs in this appendix demonstrate control measures installed on Laboratory property and are for informational purposes only.

<table>
<thead>
<tr>
<th>Control Type</th>
<th>Control Sub Type</th>
<th>Control Name</th>
<th>Life Cycle (months)</th>
<th>Control Purpose Erosion Control (EC)/Sediment Control (SC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>00</td>
<td>Seed and Mulch</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Seed and Wood Mulch</td>
<td>24</td>
<td>EC</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Seed and Gravel Mulch</td>
<td>120</td>
<td>EC</td>
</tr>
<tr>
<td></td>
<td>03</td>
<td>Hydromulch</td>
<td>12</td>
<td>EC</td>
</tr>
<tr>
<td></td>
<td>04</td>
<td>Seeding</td>
<td>24</td>
<td>EC</td>
</tr>
<tr>
<td></td>
<td>05</td>
<td>Gravel mulch</td>
<td>120</td>
<td>EC</td>
</tr>
<tr>
<td></td>
<td>06</td>
<td>Erosion Control Blanket</td>
<td>24</td>
<td>EC</td>
</tr>
<tr>
<td></td>
<td>07</td>
<td>Seed and Compost</td>
<td>24</td>
<td>EC</td>
</tr>
<tr>
<td>02</td>
<td>00</td>
<td>Permanent Vegetation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Grasses and Shrubs</td>
<td>120</td>
<td>EC*</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Forested/Needle Cast</td>
<td>120</td>
<td>EC*</td>
</tr>
<tr>
<td></td>
<td>03</td>
<td>Vegetation Buffer Strip</td>
<td>120</td>
<td>EC</td>
</tr>
<tr>
<td></td>
<td>04</td>
<td>Established Vegetation</td>
<td>120</td>
<td>EC</td>
</tr>
<tr>
<td>03</td>
<td>00</td>
<td>Berms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Earthen Berm</td>
<td>120</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Base Course Berm</td>
<td>120</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td>03</td>
<td>Log Berm</td>
<td>120</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td>04</td>
<td>Asphalt Berm</td>
<td>120</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td>05</td>
<td>Silt Dike</td>
<td>24</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td>06</td>
<td>Straw Wattle</td>
<td>24</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td>07</td>
<td>Terra Tube</td>
<td>120</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td>08</td>
<td>Retaining Wall</td>
<td>120</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td>09</td>
<td>Curbing</td>
<td>120</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Gravel Bags</td>
<td>120</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Eco-Block</td>
<td>120</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Rock Berm</td>
<td>120</td>
<td>SC</td>
</tr>
</tbody>
</table>
Appendix B, Control Measures (continued)

<table>
<thead>
<tr>
<th>Control Type</th>
<th>Control Sub Type</th>
<th>Control Name</th>
<th>Life Cycle (months)</th>
<th>Control Purpose Erosion Control (EC)/Sediment Control (SC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td></td>
<td>Silt Fence</td>
<td>120</td>
<td>SC</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Coir log</td>
<td>120</td>
<td>SC</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Redi-Rock Berm</td>
<td>120</td>
<td>SC</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>Wood Chip Wattle</td>
<td>36</td>
<td>SC</td>
</tr>
<tr>
<td>04</td>
<td>00</td>
<td>Channel/Swale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td></td>
<td>Earthen Channel/Swale</td>
<td>120</td>
<td>EC</td>
</tr>
<tr>
<td>02</td>
<td></td>
<td>Concrete/Asphalt Channel/Swale</td>
<td>120</td>
<td>EC</td>
</tr>
<tr>
<td>03</td>
<td></td>
<td>Rock Channel/Swale</td>
<td>120</td>
<td>EC</td>
</tr>
<tr>
<td>04</td>
<td></td>
<td>Culvert</td>
<td>120</td>
<td>EC</td>
</tr>
<tr>
<td>05</td>
<td></td>
<td>Water Bar</td>
<td>120</td>
<td>EC</td>
</tr>
<tr>
<td>06</td>
<td></td>
<td>Riprap</td>
<td>120</td>
<td>EC</td>
</tr>
<tr>
<td>07</td>
<td></td>
<td>Vegetated Swale</td>
<td>120</td>
<td>EC</td>
</tr>
<tr>
<td>08</td>
<td></td>
<td>TRM-Lined Swale</td>
<td>120</td>
<td>EC</td>
</tr>
<tr>
<td>05</td>
<td>00</td>
<td>Sediment Traps and Basins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td></td>
<td>Sediment Trap</td>
<td>120</td>
<td>SC</td>
</tr>
<tr>
<td>02</td>
<td></td>
<td>Sediment Basin</td>
<td>120</td>
<td>SC</td>
</tr>
<tr>
<td>03</td>
<td></td>
<td>Sand Filter</td>
<td>120</td>
<td>EC</td>
</tr>
<tr>
<td>04</td>
<td></td>
<td>Gravel Infiltration Strip</td>
<td>120</td>
<td>SC</td>
</tr>
<tr>
<td>05</td>
<td></td>
<td>Bioretention Basin</td>
<td>120</td>
<td>SC</td>
</tr>
<tr>
<td>06</td>
<td></td>
<td>Infiltration Basin</td>
<td>120</td>
<td>SC</td>
</tr>
<tr>
<td>07</td>
<td></td>
<td>Plunge Pool</td>
<td>120</td>
<td>SC/EC</td>
</tr>
<tr>
<td>06</td>
<td>00</td>
<td>Check Dam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td></td>
<td>Rock Check Dam</td>
<td>36</td>
<td>SC</td>
</tr>
<tr>
<td>02</td>
<td></td>
<td>Log Check Dam</td>
<td>36</td>
<td>SC</td>
</tr>
<tr>
<td>03</td>
<td></td>
<td>Juniper Bale</td>
<td>120</td>
<td>SC</td>
</tr>
<tr>
<td>04</td>
<td></td>
<td>Energy Dissipater</td>
<td>240</td>
<td>SC</td>
</tr>
<tr>
<td>07</td>
<td>00</td>
<td>Gabions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td></td>
<td>Gabion</td>
<td>120</td>
<td>SC</td>
</tr>
<tr>
<td>02</td>
<td></td>
<td>Gabion Blanket</td>
<td>120</td>
<td>EC</td>
</tr>
<tr>
<td>08</td>
<td>00</td>
<td>Cap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td></td>
<td>Earth Cap</td>
<td>120</td>
<td>EC</td>
</tr>
<tr>
<td>02</td>
<td></td>
<td>Rock Cap</td>
<td>120</td>
<td>EC</td>
</tr>
<tr>
<td>03</td>
<td></td>
<td>Asphalt Cap</td>
<td>120</td>
<td>EC</td>
</tr>
<tr>
<td>04</td>
<td></td>
<td>Metal Cap</td>
<td>120</td>
<td>EC</td>
</tr>
</tbody>
</table>

These two types of controls were retired in 2013, and active instances of the control types at SMAs were recoded. These two still appear in the master list because the retired asset codes are still in use and may appear in information published before 2013.
Appendix B, Control Measures (continued)

Seed and Mulch

General Description

Seed and mulch are used in combination. Mulch includes wood, hydromulch, gravel, erosion-control blankets, and turf-reinforcement blankets.

Perennial vegetative cover from seeding has been shown to remove between 50% and 100% of total suspended solids from storm water runoff, with an average removal of 90%.

Control Function

Seed and mulch controls are used primarily to control erosion and to reestablish areas disturbed by construction activities. However, these control measures can also be used for run-on, runoff, and sediment control if the storm water discharge is localized producing sheet flow (nonchannelized).

Selection Criteria (if applicable), Material Requirements, and Construction Specifics

Selection Criteria

The selection of seed and mulch is related to the slope of the area where protection is required. The table below presents common guidance used at the Laboratory.

<table>
<thead>
<tr>
<th>Erosion Control</th>
<th>Slopes Steeper than 1:1</th>
<th>Slopes Flatter than 1:1</th>
<th>Slopes Flatter than 1:2</th>
<th>Slopes Flatter than 1:3</th>
<th>Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent blankets</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BFM, FGM hydromulch</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Wood fiber hydromulch</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Straw/coir blankets</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Material Requirements and Construction Specifics

Seed and mulch requirements are selected during planning stages of the work. The Laboratory provides technical specifications that specify quality control, materials, approved vendors, and execution requirements. In most cases, seed is applied in contact with soil, and mulch is used to provide a protective cover for raindrop protection, promote seed germination, and help with seedling survival. Materials readily available from established suppliers are described below.

Wood Mulch

- Wood straw mulch, wood chips, green-waste mulch, and bark chips are all accepted forms of wood mulch. Wood mulch application covers the ground surface up to 4 in. thick. Wood mulch is not used in areas with steep slopes and is not used where it could run on to a storm water control and interfere with the function of the control.

Gravel Mulch

- Gravel is ¾ in. to 2 in. in diameter, round or crushed. Gravel mulch is applied 2–6-in. thick over the soil surface and is not compacted.
Appendix B, Control Measures (continued)

Hydromulch

- Wood fiber hydromulch is applied on slopes flatter than 2:1. Mulch is combined with an organic plantago-based tackifier.
- For slopes steeper than 2:1, bonded fiber products are available.

Blankets and Matting

- On slopes less than 1:1, straw/coir blend blankets are specified.
- For high-flow channels or slopes steeper than 1:1, permanent composite TRM is specified.

Seed

- Standard seed mixes used at the Laboratory consist of a variety of pure live seed of grass species, wildflowers, forbs, and shrubs. Only two approved sources have proven consistent in meeting the demands of the high altitude and typical rainfall amounts at the Laboratory.

Inspection and Maintenance

For seeding and mulch, typical maintenance actions may result from rainfall events that strip the ground of seed and mulch before the seed has established, from animal disturbance, and from human disturbance such as vehicular traffic. Maintenance actions may include reseeding of damaged areas and installing temporary barriers.

Hydromulch applied at a detention pond in Chaquehui Canyon
Appendix B, Control Measures (continued)

Permanent Vegetation

General Description
Established vegetation (or permanent vegetation) is made up of areas of existing mature vegetation that provides erosion control and storm-water infiltration. There are two broad categories of established vegetation at the Laboratory: (1) low-growing vegetation classified as grasses and shrubs and (2) piñon-juniper, ponderosa pine, and mixed conifer vegetation classified as forested.

Control Function
Established vegetation is primarily used for erosion control, including sediment control, run-on control, and runoff control in areas with no concentrated flow.

Selection Criteria (if applicable), Material Requirements, and Construction Specifics

Selection Criteria
Any area of existing perennial vegetation that increases storm-water infiltration and protects the soil from wind erosion, raindrop impact, or storm water overland flow is selected. In areas where wetland-type vegetation is planned or is in place, specific plant materials are selected for propagation. In existing vegetated areas, examination of current coverage and robustness of the area (organic material, water availability) is required before expanding the area.

Material Requirements
Grasses and shrubs are examined for native habitat. Areas that are determined to need wetland plantings may require a specific selection of plants for long-term establishment.

Construction Specifics
Permanent vegetation is installed by qualified personnel specializing in landscaping. Tree and woody plants are planted under correct seasonal conditions. Establishing permanent vegetation sometimes includes a long-term watering program.

Inspection and Maintenance
- Inspection is performed for significant disturbances to vegetation (e.g., construction, fire, thinning, road construction, and creation of new storm water channels). Repair, if possible, is initiated.
- Continuing a watering program is evaluated during inspection activities.
Berms

General Description
This category of storm water control includes earthen berms, base-course berms, log berms, asphalt berms, silt dikes, straw wattles, retaining walls, curbing, gravel bags, Eco-Block berms, Redi-Rock berms, rock berms, S-fences, and coir logs.

Control Function
Berms are used primarily for run-on diversion of sheet flow and channelized flow and also for retention of run-on, runoff, and sediment in low-flow applications. Straw wattles, S-fences, rock berms, and gravel bags can be used along the toe, top, and face and at-grade breaks of slopes to shorten slope length and along the perimeter of exposed soil areas to reduce flow velocities and retain sediment. Filter fabric may be used where reductions in turbidity are required. Retaining walls are used primarily for slope stabilization and sediment control.
Appendix B, Control Measures (continued)

Selection Criteria (if applicable), Material Requirements, and Construction Specifics

Selection Criteria
- The velocity of on-coming water, including the energy of water, will lead to the type of berm used. Incorrect berm construction could result in scour and overtopping where overtopping is not desired.
- High berms require select materials and compaction testing.

Material Requirements
- Diversion berms are constructed primarily from select compactable granular material such as base course or asphalt (berms and curbing).
- Retention berms are constructed primarily from earth, base course, logs, or asphalt.

Construction Specifics

Berms
- The Laboratory maintains construction specifications that describe required materials, quality control, and execution and testing requirements.
- Earthen berms require vegetative controls to prevent erosion of the berm itself. Riprap is added if additional armoring is necessary.
- Asphalt berms and curbs are installed per design drawings and Laboratory standard drawings.
- For areas with significant traffic, gravel or asphalt berms may be recommended.
- Where berms will retain water, berm fill material requires compaction testing.
- Berms should be stabilized with appropriate materials such as seed and ECBs.
- When used as a perimeter or downslope control, berms divert runoff to a sediment trapping control such as a sediment trap or basin.

Wattle and Coir Log
- Straw wattles are installed along the contour with the ends of each wattle turned upslope to prevent runoff from flowing around the end. Wattles are installed in shallow trenches dug 3 to 5 in. deep for soft, loamy soils and 2 to 3 in. deep for hard, rocky soils.
- The vertical spacing requirements for slope installations are based on a higher density of wattles for steep slopes and lower density for flatter slopes.
- Wooden stakes or rebar are driven through the middle of the wattle and deep enough into the ground to anchor the roll in place.

Other Berm Types
- Installation of log berms is similar to the installation of wattles. Logs are delimbed, trenched in, and backfilled. Wooden stakes may be used for additional support.
- Rock berms are constructed of large angular rock. Height and depth of the berm depend on the expected storm water flow.
Appendix B, Control Measures (continued)

- Gravel-bag berms are constructed of bags of woven polypropylene, polyethylene, or polyamide fabric and filled with gravel.
- Installation of Eco-Blok rubber sediment control block is similar to that of gravel bag berms. Eco-Blok can be staked down in soil or glued to asphalt or concrete.
- Ertec S-fencing is installed perpendicular to sheet flow. The fencing is trenched to 3 in. and backfilled.
- Retaining walls and Redi-Rock berms are constructed to appropriate engineering standards.

Inspection and Maintenance

Berms

- Inspections may find that berms were not installed to sufficient height, requiring rework to raise, widen, or extend the berm.
- Compacted earthen or granular berms degrade, scour, and settle. Fill materials may need to be added and recompressed.
- Rodent burrows may result in undermining. Recompressing the berm can help reduce impacts from burrows.

Wattles

- Wattle anchorages can be displaced, crushed, torn, and misaligned. Typical maintenance entails restoring or replacing the wattle to address evident failure issues.
- Rodents and other animals can destroy wattles. Wattles are removed and reinstalled or new wattles installed on top of existing damaged wattles. With time, wattles degrade to a point where they require replacement.

Retaining Walls

- Inspections may find cracking, spalling, slumping, and slope changes in retaining walls. Depending upon the severity of failure, maintenance may be requested. Maintenance includes addressing issues that contribute to failure and may include recompressing areas and repairing cracks.
Appendix B, Control Measures (continued)

Berm in Potrillo Canyon
Appendix B, Control Measures (continued)

Earthen berm with TRM at the top of Pueblo Canyon

Coir logs placed in Bayo Canyon
Appendix B, Control Measures (continued)

Channels and Swales

General Description
This category of storm water control includes earthen swales, concrete or asphalt swales, rock-lined (riprap) swales, vegetated swales, culverts, riprap outlet protection, and water bars.

Control Function
Channels and swales are constructed within natural terrain or lined diversions using riprap and concrete that collect and convey concentrated flows of storm water runoff around an area. Lined channels or swales and culverts can also be used as erosion control if they transport storm water across a SWMU or AOC without contacting it. Water bars are used to divert water off a roadway without blocking access. Riprap outlet protection is used to stabilize soil and sediment below a storm water source.

Selection Criteria (if applicable), Material Requirements, and Construction Specifics

Selection Criteria
• Channels and swale selection are based on the location where installed.
  In natural terrain areas using rock-lined swales or channels, vegetated swales or water bars made from base course that fit into the surrounding area are encouraged.
  In institutional areas, such as parking lots, an asphalt water bar or concrete valley gutter may be selected.
• Size and function are designed to meet anticipated storm water volume.
• Where a storm drain is required, an engineered design may be required for headwalls with reinforced concrete.

Material Requirements
• Based on the size, location, and flow rate, channels and swales are primarily made of concrete, base course, or earth. Vegetation may be required in areas where there is no vehicular traffic. For added stability, TRM or riprap may be added.
• Storm water culverts are made of corrugated metal pipe or corrugated HDPE smooth wall pipe.

Construction Specifics
• Concrete valley gutters are typically 4 to 6 ft wide. Valley gutters are often a part of new construction in facility parking areas.
• Construction of storm drain culverts requires procedures to avoid subsurface utilities. For areas with concrete work, procedures are required regarding access roads for ready-mixed concrete trucks to deliver to the Site. In areas with difficult access, roads may be graded and improved.
• Seeds should be planted during a favorable growing season in areas requiring vegetation.
Appendix B, Control Measures (continued)

Inspection and Maintenance

• Channel erosion or breaching may occur after storm events. Eroded areas may require reconstruction and compaction.
• Inlet structures for storm water culverts may become clogged and require periodic cleaning.
• Vegetation loss from high flows may require reseeding an area or changing the type of surface coverage to one that is more appropriate.
• Removing accumulated sediment is routinely performed.

Channel with TRM bank stabilization in Pueblo Canyon.
Appendix B, Control Measures (continued)

Sediment Traps and Detention Basins

General Description
Detention basins are used to detain sediment and control the release of runoff. Runoff is released at a controlled rate through an outlet structure. Sediment traps perform the same function as basins but are typically smaller in size and do not have pipe outlets.

Control Function
Sediment traps and detention basins are used for sediment control. Under appropriate conditions, they are used for runoff control and erosion control in the IP program.

Selection Criteria (if applicable), Material Requirements, and Construction Specifics

Material Requirements
- Basin, plunge pool, and trap embankment are constructed primarily from earth or compactable granular material such as base course, which is free of roots, woody vegetation, and large stones.
- Inlets and outlets are constructed of a hardened surface such as concrete or riprap or may consist of a pipe with a stabilized outlet.
- Spillways are constructed of a hardened surface such as concrete or riprap.

Construction Specifics
- Sediment trap outflows must discharge through a stabilized low point. Spillways should be designed to provide the trap with a settling zone and a sediment storage zone.
- Embankment fill material is placed and compacted with a compactor or the appropriate earth-moving equipment. Specifications require compaction testing where berms will retain water.
- Embankments are stabilized with seed and erosion control blankets, seed and hydromulch, or other appropriate stabilization controls.

Inspection and Maintenance
- Inlets, outlets, spillways, plunge pools, and pond/trap embankments are inspected for damage such as vegetation loss or excess, bank instability, debris build-up, erosion, and rock displacement and are maintained as needed to effectively convey storm water runoff.
- Basin inlet and outlet pipes may become plugged with debris or sediment and require cleaning. Spillways may become clogged or damaged and may require repair.
- Sediment deposits and debris need to be routinely removed from detention basins to maintain the appropriate structure storage capacity for both sediment and runoff. Generally, sediment traps are not permanent structures.
Appendix B, Control Measures (continued)

Check Dams

General Description
This category of storm water control includes rock and log check dams and juniper bales. Note: Straw wattles and silt fences are not used.

Control Function
Check dams are used primarily for sediment control but may also be used in small channels to control run-on and runoff.

Selection Criteria (if applicable), Material Requirements, and Construction Specifics

Material Requirements

- Rock check dams are built using angular rock with an appropriate density and size to withstand the design’s water velocity.
- Logs check dams are built using logs that may be harvested on-site with an appropriate diameter for the application.
Appendix B, Control Measures (continued)

Construction Specifics

• Check dams are placed at a distance and height to allow water ponding from a downstream check dam to reach the toe of the upstream dam.

• Structures are designed to allow high flows (typically a 2-yr storm or larger) to pass safely over the check dam without an increase in upstream flooding or damage to the check dam.

• Dams are stabilized by entrenching the material into the sides and bottom of the channel.

• Rock is placed individually by hand or by mechanical methods.

• Log check dams may be doweled into the channel to withstand high flows.

• Scour protection may be placed on the downstream side of the dam to reduce downstream erosion.

Inspection and Maintenance

• Check dams are inspected as flow conditions change to ensure they are located in the preferential flow path to reduce flow velocity and/or retain sediment. Relocation or resizing of the structure is completed as necessary.

• Check dams are inspected for scour, structural damage, and erosion caused by flows around, under, or below the dam structure. Repairs to the control are made as needed.

• As Site conditions change and rocks shift, the check dam is maintained to ensure the dam center is lower than its edges and the edges are below the edge of the channel. Stone may be added or removed to maintain appropriate structure geometry.

• Check dams are maintained by removing large debris, trash, and leaves so the function of the structure is not compromised.
Appendix B, Control Measures (continued)

Doweled log check dam during flow event in Acid Canyon

Native rock check dams installed in preferential flow path
Appendix B, Control Measures (continued)

Gabions

General Description
This category of storm water control includes gabions and gabion blankets.

Control Function
Gabions are pervious structures designed to stabilize and protect channels and slopes subject to erosion. When installed perpendicular to the storm water flow, gabions act as a check dam allowing sediments to accumulate behind and within the open void structure. Gabion blankets, also called gabion mattresses, are used to line channels and swales to provide additional stability. Gabion blankets are often installed contiguously with gabion baskets.

Selection Criteria (if applicable), Material Requirements, Construction Specific

Selection Criteria

• The decision to place a gabion structure rather than a berm or rock check dam is based on whether the structural stability and pervious nature of gabions are required.

 ❖ Gabion structures will manage storm water based on design criteria provided. The long-term stability of the structure does not rely upon vegetated growth like a berm does. Once built on a stable foundation, the gabion does not require a compacted fill like a berm requires. The gabion itself resists failure modes by mass.

 ❖ Gabion mattresses are placed downstream of discharge locations of other storm water controls. The mattress is selected when placing riprap into a channel will not prevent movement or erosion downstream.

Material Requirements

• Gabion fill is well-graded round river rock or Type A angular riprap.

• Wire enclosures come in different configurations and can be assembled in the field or manufactured and delivered empty to the site.

• Gabion fasteners are of similar gage to the wire enclosure.

• Gabion mattresses may need additional anchors. These include steel angles, pipe, or railroad rails that are driven through the gabions at regular spacing.

• Gabions are bedded on filter fabric.

Construction Specifics

Gabions are installed in accordance with NMDOT standards and specifications. Placement of gabions includes the following:

• The gabion is either placed on firm bedrock or tuff or built on a compacted foundation.

• At ends not in the water course, gabions are built on stable banks.

• Gabions are stacked on each other in a staggered manner, much like masonry blocks.
Appendix B, Control Measures (continued)

Inspection and Maintenance

- Gabions that become unseated causing scouring underneath the structure require maintenance. The structure may need to be excavated down to the point of failure, and recompacting and rebuilding the basket may be required.
- Gabion wire may break and rocks may spill out. The basket may be rebuilt or mended to restore function.
- Gabions that slip out of place are generally replaced rather than mended.
- Gabion blankets that slip out of position require additional anchorage. Anchorage methods include driving railroad rails into good material.

Permanent Caps

General Description

This category of storm water control includes clay or soil, rock, concrete, and asphalt caps.

Control Function

Caps are used primarily to control erosion and to isolate areas of potential soil contamination from storm water. Caps result in impermeable surfaces that remove the potential of water movement through the area capped.
Appendix B, Control Measures (continued)

Selection Criteria (if applicable), Material Requirements, Construction Specifics

Selection Criteria

Permanent caps are selected when no other alternative is available to prevent pollutants at a Site from migrating.

Facility usage such as frequent vehicle use and limited space may prevent other means, such as berms or ponds, from being used. The type of cap selected is also based upon the facility usage of the area. In areas where vehicle traffic may wear down the cap, a hard surface such as concrete or asphalt is selected.

Material Requirements

- Earthen caps are at least 24 in. thick and typically covered with rock or gravel to protect the cap from erosion. The type of earth cover selected is intended to be impervious with no intrusion of water into the area with pollutants.

- Hard caps such as concrete and asphalt are a minimum thickness depending upon use and vehicle traffic.

Construction Specifics

Caps are engineered to meet a specific need. Additional design considerations include installing diversions, curbs, berms, and cut-off walls to ensure storm water does not cause erosion features to form either near or on the cap itself.

Caps using earthen materials have specifications for material types and compaction requirements. Hard caps also have minimum testing requirements.

Inspection and Maintenance

- Typical inspections that lead to maintenance include condition assessments of diversions and the cap itself.

- Intrusions may occur with both earthen and hard caps. Weeds (growing in cracks), rodent burrows, large woody plants, or vehicular damage require repair or removal.

- Inspections noting erosional features that could cause migration of storm water to the cap are performed and BMPs added to remedy the feature.
Appendix C
Understanding the Analytical Results Plots

For each SMA where storm water samples were collected and analyzed from 2011 through 2019, the analytical results plots have been prepared. The purpose of the analytical plots is to present the analytical results in a manner that allows direct comparison with the TALs as defined in the Individual Permit (ATAL, MTAL, or MQL). In 2019, the plot format changed to include inorganic and organic data for all confirmation monitoring samples collected at the SMA in one plot. The plot contains the results for all analyzed metals, weak acid dissociable cyanide, gross-alpha radioactivity and radium, and organic compounds analyzed in the storm water sample collected at the Site and associated SMA per the requirements set forth in Appendix B of the Permit. Baseline confirmation monitoring samples are represented by a circular symbol in the plot and are referred to as “b”. Initial corrective action confirmation monitoring samples are represented by a triangle symbol in the plot and are referred to as “c1”. Where applicable, subsequent corrective action confirmation monitoring samples at an SMA are represented by a square symbol in the plot and referred to as “c2”. The plots are dynamic, and content will vary based on the amount of analytical data, number of samples collected, and number of monitoring stages at an SMA.

Analytical results for each analyte presented in the plots are normalized by calculating an exceedance ratio. This ratio is defined as the analytical result divided by applicable TAL (ATAL, MTAL, or MQL). Thus, results exceeding the TAL will be greater than an exceedance ratio of 1.0. The exceedance ratios are plotted on a log scale to allow the display of a larger range of values. A solid symbol on the plot represents a result that is detected above the MDL, while a hollow symbol represents a value that is considered a nondetect, meaning the analytical laboratory was not able to detect a concentration greater than the MDL. From 40 CFR Appendix B to Part 136, the MDL is defined as “…the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix containing the analyte.”

For the storm water data, a nondetected result is either reported as the MDL value or the PQL value. The PQL is an estimation of the concentration measurement and is normally 2.5 to 10 times the MDL. During 2011 to 2014, nondetected analytes were reported at the value of the PQL. When reporting the PQL, the reported value for a nondetected result may be greater than or equal to a TAL (ATAL, MTAL, or MQL). However, starting in 2015, nondetected analytes were reported at the value of the MDL less than the TAL.

Between 2011 and 2014, several nondetected results reported at the PQL for benzo(a)pyrene and hexachlorobenzene were greater than their TALs (MQLs), and the MDLs for these constituents were also greater than their ATALs. In 2015, the Permittees changed the analytical method for benzo(a)pyrene to EPA method 8310. This change allows for the reporting of nondetects of this constituent below the ATAL. In 2015, the Permittees also changed the analytical method for hexachlorobenzene to EPA method 8081B. This method is the most sensitive commercially available EPA-approved method but consistently has an MDL greater than the TAL. These methods were in use by the Permittees starting in 2015.

BTVs in storm water for some metals, gross-alpha radioactivity, and PCBs where available, are also plotted to provide additional points of reference when evaluating the significance of the analytical result. The process for the determination of the BTVs is presented in a report prepared by the Permittees on PCBs in storm water (LANL 2012, 219767) and another report on metals and selected radionuclides in storm water (LANL 2013, 239557).

The following schematic provides more specific details related to individual components of the analytical results plots.
Appendix C, Understanding the Analytical Results Plots (continued)

When available, applicable BTVs are plotted for each analyte when a resulting value exceeds the TAL. BTVs are normalized by dividing by the TAL and are plotted for comparison to storm water sample results.

The geometric mean of all results in a monitoring stage (b, c1, or c2) is calculated as described in Part H.D of the permit and plotted for analytes that are compared to an ATAL. Geomeans for b samples are plotted with an X, for c1 samples with a +, and for c2 samples with an X.

List of all confirmation monitoring samples collected at the SMA. Analytical data from each sample is plotted using the color shown in this legend.

Legend of symbols used in the plots. Hollow symbols indicate a nondetect result below quantitation level. The value plotted is the quantitation level divided by the TAL. Solid symbols indicate a detected value. The value plotted is the result divided by the TAL. Samples collected during baseline monitoring (b) are shown using a circle symbol. Samples collected after the initial certification of corrective action (c1) are shown using a triangles symbol. Samples collected after subsequent certifications of corrective action (c2) are shown using a square symbol. This legend is dynamic and will only display symbols relevant to the analytical data plotted for each SMA.

This axis displays the analyte list with validated analytical data available for all confirmation monitoring samples at each SMA. This list is dynamic and will only include analytes relevant to data plotted for each SMA. Analytes with TAL exceedencess are shown in blue font.

Appendix C, Understanding the Analytical Results Plots (continued)
Appendix C, Understanding the Analytical Results Plots (continued)

These rows present the TAL value used in the plot, the applicable MQL, ATAL, and MTAL values, and the units of measure reported for each analyte as established in Part 6C of the Permit.

This row represents the analyte list with validated analytical data available for confirmation monitoring samples at an SMA and corresponds to the analytes displayed on the plot.

This row is the geometric mean of all baseline monitoring data for the analyte that are compared to an ATAL in the plot.

This row is the geometric mean of all corrective action monitoring data for the analyte that are compared to an ATAL in the plot. As applicable, SMAs with subsequent corrective action monitoring data for an analyte will have a row listed.

Analytical data for each sample date plotted are displayed on two rows. The analytical results are normalized to the TAL and listed here as an exceedance ratio. The top row is the ratio of detected results with exceedances in bold. The second row is the ratio of nondetected results. NA indicates no analytical results.

Bgeo_mean/ATAL

Cfgeo_mean/ATAL

2011-08-21 d

2013-07-25 d

2013-09-15 d

2013-09-15 d

2018-07-23 d

2018-07-23 d

2018-08-10 d

2018-08-10 d

Bold font indicates TAL exceedance; d = detected_result/TAL, nd = non-detected_result/TAL
Appendix D

References

The following reference list includes documents cited in this plan. Parenthetical information following each reference provides the author(s), publication date, and ERID, ESHID, or EMID. This information is also included in text citations. ERIDs were assigned by the Laboratory’s Associate Directorate for Environmental Management (IDs through 599999); ESHIDs were assigned by the Laboratory’s Associate Directorate for Environment, Safety, and Health (IDs 600000 through 699999); and EMIDs are assigned by N3B (IDs 700000 and above). IDs are used to locate documents in N3B’s Records Management System and in the Master Reference Set. The NMED Hazardous Waste Bureau and N3B maintain copies of the Master Reference Set. The set ensures that NMED has the references to review documents. The set is updated when new references are cited in documents.

Buckland, C., April 20, 1948. “Sandia Canyon–Clearing for Future Public Road, Picnic Area,” Los Alamos Scientific Laboratory memorandum to R.J. Westcott from C. Buckland, Los Alamos, New Mexico. (Buckland 1948, 006001)

Appendix D, References (continued)

Appendix D, References (continued)

LANL (Los Alamos National Laboratory), January 31, 1995. “Field Unit 3, Operable Unit 1122, Technical Area 33, RFI Report for PRs 33-004(d), 33-004(g), 33-004(h), 33-004(i), 33-005(a), 33-005(b), 33-005(c), 33-010(e), 33-010(f), 33-011(e), 33-012(a), 33-015, 33-007(c), 33-011(a),” Los Alamos National Laboratory document LA-UR-95-0882, Los Alamos, New Mexico. (LANL 1995, 071262)

Appendix D, References (continued)

LANL (Los Alamos National Laboratory), September 29, 1995. “RFI Report for Field Unit 3, Operable Unit 1122, Technical Area 33, RFI Report for PRSs 33-003(a), 33-004(a), 33-007(c), 33-009, 33-011(d), 33-013, 33-016, 33-017, Revised Sampling Plans for PRSs 33-003(b), 33-004(k), 33-008(a), 33-008(b), C-33-001, C-33-002,” Los Alamos National Laboratory document LA-UR-95-3626, Los Alamos, New Mexico. (LANL 1995, 071300)

LANL (Los Alamos National Laboratory), September 1995. “RFI Report for Potential Release Sites 48-001, 48-002(e), 48-003, 48-005, 48-007(a), 48-007(b), 48-007(c), 48-007(d), 48-007(f), 48-010,” Los Alamos National Laboratory document LA-UR-95-3328, Los Alamos, New Mexico. (LANL 1995, 050289)

LANL (Los Alamos National Laboratory), September 1995. “RFI Report for Potential Release Sites 36-003(a), 36-003(b), 36-005, C-36-003 (located in former Operable Unit 1130),” Los Alamos National Laboratory document LA-UR-95-3375, Los Alamos, New Mexico. (LANL 1995, 053985)

Appendix D, References (continued)

LANL (Los Alamos National Laboratory), November 2, 1995. “RFI Report for Potential Release Sites 18-002(a–c), 18-003(a–h), 18-004(a,b), 18-005(a), 18-008, 18-010(b–f), 18-011, 18-012(a–c), 18-013, 27-002, PCO Wells, LACEF Monitoring Wells, Wetlands (located in former Operable Unit 1093),” Los Alamos National Laboratory, Los Alamos, New Mexico. (LANL 1995, 055527)

LANL (Los Alamos National Laboratory), December 1995. “RFI Report for Potential Release Sites 33-004(b), 33-004(c), 33-004(j), 33-004(m), 33-006(a), 33-006(b), 33-007(a), 33-007(b), 33-010(a), 33-010(b), 33-010(c), 33-010(d), 33-010(g), 33-010(h), 33-011(b), 33-011(c), 33-014,” Los Alamos National Laboratory document LA-UR-95-4439, Los Alamos, New Mexico. (LANL 1995, 051903)

Appendix D, References (continued)

LANL (Los Alamos National Laboratory), June 1996. “RFI Report for Potential Release Sites 35-003(d, e, f, g, l, m, o, q, and r), 35-016(g and h),” Los Alamos National Laboratory document LA-UR-96-1605, Los Alamos National Laboratory. (LANL 1996, 054422)

LANL (Los Alamos National Laboratory), June 1996. “RFI Report for Potential Release Sites in TA-46, 46-003(h), 46-004(b), 46-004(g), 46-004(h), 46-004(m), 46-004(q), 46-004(s), 46-004(u), 46-004(v), 46-004(x), 46-004(y), 46-004(z), 46-004(a2), 46-004(b2), 46-004(c2), 46-004(d2), 46-004(e2), 46-004(f2), 46-006(a), 46-006(b), 46-006(c), 46-006(d), 46-006(f), 46-006(g), 46-007, 46-008(b), 46-010(d), C-46-002, C-46-003,” Los Alamos National Laboratory document LA-UR-96-1957, Los Alamos, New Mexico. (LANL 1996, 054929)

LANL (Los Alamos National Laboratory), June 1996. “Voluntary Corrective Action Completion Report for Solid Waste Management Units at TA-33, 33-010(a), Canyon-Side Disposal Area, 33-010(d), Surface Disposal Area, 33-010(g), Canyon-Side Disposal Area, 33-011(b), General Storage Area,” Los Alamos National Laboratory document LA-UR-96-1839, Los Alamos, New Mexico. (LANL 1996, 054755)

LANL (Los Alamos National Laboratory), September 1996. “RFI Report for Potential Release Sites 2-004(a through f), 2-008(b), and 2-012,” Los Alamos National Laboratory document LA-UR-96-3155, Los Alamos, New Mexico. (LANL 1996, 055226)

Appendix D, References (continued)

LANL (Los Alamos National Laboratory), March 20, 1997. “Voluntary Corrective Measures Plan for Potential Release Sites at TA-16: 16-005(d), 16-006(g,h), 16-013, 16-017, 16-025(x), 16-026(q), 16-029(g2,h2,w,x), 16-031(c,d), 16-034(p), C-16-065, C-16-068, C-16-074,” Los Alamos National Laboratory document LA-UR-97-640, Los Alamos, New Mexico. (LANL 1997, 055653)

Appendix D, References (continued)

LANL (Los Alamos National Laboratory), September 1997. “RFI Report for Potential Release Sites at TA-16: 11-012(a,b), 13-003(a), 16-006(c,d), 16-010(a), 16-021(a), 16-026(c,d,v), 16-028(a), 16-030(g),” Los Alamos National Laboratory document LA-UR-97-3072, Los Alamos, New Mexico. (LANL 1997, 062539)

LANL (Los Alamos National Laboratory), September 1997. “RFI Report for TA-3 Potential Release Sites 3-004(c,d), 3-007, 3-014(k,l,o), 3-021, 3-049(a), 3-052(b), 3-056(k), C-3-014,” Los Alamos National Laboratory document LA-UR-97-3571, Los Alamos, New Mexico. (LANL 1997, 056660.4)

LANL (Los Alamos National Laboratory), June 8, 1999. “Identification of New PRSs,” Los Alamos National Laboratory letter (EM/ER:99-147) to J. Bearzi (NMED-HRMB) from J.A. Canepa (LANL) and T.J. Taylor (DOE-LAAO), Los Alamos, New Mexico. (LANL 1999, 063395)

Appendix D, References (continued)

LANL (Los Alamos National Laboratory), August 18, 2000. “Submittal of Response to Request for Supplemental Information (RSI) for the Voluntary Corrective Action (VCA) Plan for Potential Release Sites (PRSS) 33-007(b), 33-010(c), and C-33-003 [and attached ‘Segmented Gate System, Voluntary Corrective Action Status Report for Potential Release Sites 33-007(b), 33-010(c), C-33-033’],” Los Alamos National Laboratory letter (ER2000-0171) to J. Kieling (NMED-HWB) from J.A. Canepa (LANL) and T.J. Taylor (DOE-LAAO), Los Alamos, New Mexico. (LANL 2000, 066889)

LANL (Los Alamos National Laboratory), October 2000. “Addendum to RFI Report for Field Unit 1, SWMU 3-010(a),” Los Alamos National Laboratory document, Los Alamos, New Mexico. (LANL 2000, 068736)

LANL (Los Alamos National Laboratory), July 23, 2001–March 13, 2002. "Field Notebook for SWMUs 03-001(k), 03-003(c), 03-011, 03-049(e), 03-056(a), 27-003, 39-007(a), 60-002, 60-007(a), and C-09-001," Los Alamos National Laboratory, Los Alamos, New Mexico. (LANL 2001–2002, 100703)

Appendix D, References (continued)

LANL (Los Alamos National Laboratory), September 30, 2005. “Submittal of Revisions to the ‘Investigation Work Plan for Delta Prime Site Aggregate Area, at Technical Area 21’,” Los Alamos National Laboratory letter (ER2005-0475) to J.P. Bearzi (NMED HWB) from D. McInroy (ERS Deputy Program Director) and D. Gregory (DOE-LASO), Los Alamos, New Mexico. (LANL 2005, 090225)

Appendix D, References (continued)

LANL (Los Alamos National Laboratory), October 15, 2007. “Submittal of Certification of Culvert Repair Behind the SM-30 Warehouse, in the Vicinity of Solid Waste Management Units 03-010(a) and 03-001(e),” Los Alamos National Laboratory letter (EP2007-0635) to J.P. Bearzi (NMED-HWB) from S. Stiger (LANL) and D. Gregory (DOE-LASO), Los Alamos, New Mexico. (LANL 2007, 099171)

Appendix D, References (continued)

Appendix D, References (continued)

Appendix D, References (continued)

LANL (Los Alamos National Laboratory), April 1, 2009. “Request for Approval of Expanded Boundaries for Areas of Contamination for the Investigation and Remediation of Solid Waste Management Units 39-001(a) and 39-001(b) at Technical Area 39,” Los Alamos National Laboratory letter (EP2009-0180) to J.P. Bearzi (NMED-HWB) from M.J. Graham (LANL) and D.R. Gregory (DOE-LASO), Los Alamos, New Mexico. (LANL 2009, 105720)

LANL (Los Alamos National Laboratory), December 2009. “2009 Biennial Ordnance Survey Report, Solid Waste Management Units 00-011(a, c, d, and e) and Area of Concern C-00-020, Guaje/Barrancas/Rendija Canyons Aggregate,” Los Alamos National Laboratory document LA-UR-09-8186, Los Alamos, New Mexico. (LANL 2009, 108171)

Appendix D, References (continued)

LANL (Los Alamos National Laboratory), May 2010. “Interim Measure Report for Solid Waste Management Unit 01-001(f) and Los Alamos Site Monitoring Area 2,” Los Alamos National Laboratory document LA-UR-10-2641, Los Alamos, New Mexico. (LANL 2010, 109422)

Appendix D, References (continued)

Appendix D, References (continued)

LANL (Los Alamos National Laboratory), May 1, 2012. “Site Discharge Pollution Prevention Plan, Los Alamos National Laboratory, NPDES Permit No. NM0030759, May 1, 2012, LA-UR-12-20497, Revision 1, Los Alamos/Pueblo Watershed, Receiving Waters: Rendija Canyon, Bayo Canyon, Pueblo Canyon, DP Canyon, Los Alamos Canyon, Volume 1,” Los Alamos National Laboratory, Los Alamos, New Mexico. (LANL 2012, 215105)

LANL (Los Alamos National Laboratory), May 1, 2012. “Site Discharge Pollution Prevention Plan, Los Alamos National Laboratory, NPDES Permit No. NM0030759, May 1, 2012, LA-UR-12-20798, Revision 1, Sandia/Mortandad Watershed, Receiving Waters: Cañada del Buey, Mortandad Canyon, Sandia Canyon, Ten Site Canyon, Volume 2,” Los Alamos National Laboratory, Los Alamos, New Mexico. (LANL 2012, 215106)
Appendix D, References (continued)

LANL (Los Alamos National Laboratory), May 1, 2012. “Site Discharge Pollution Prevention Plan, Los Alamos National Laboratory, NPDES Permit No. NM0030759, May 1, 2012, LA-UR-12-20395, Revision 1, Pajarito Watershed, Receiving Waters: Pajarito Canyon, Twomile Canyon, Threemile Canyon, Volume 3,” Los Alamos National Laboratory, Los Alamos, New Mexico. (LANL 2012, 215107)

LANL (Los Alamos National Laboratory), May 1, 2012. “Site Discharge Pollution Prevention Plan, Los Alamos National Laboratory, NPDES Permit No. NM0030759, May 1, 2012, LA-UR-12-00849, Revision 1, Ancho/Chaquehui Watershed, Receiving Waters: Ancho Canyon and Chaquehui Canyon, Volume 5,” Los Alamos National Laboratory, Los Alamos, New Mexico. (LANL 2012, 215109)

LANL (Los Alamos National Laboratory), August 21, 2013. “NPDES Permit No. NM0030759 — Resubmittal of Completion of Corrective Action for Twelve Site Monitoring Areas,” Los Alamos National Laboratory, Los Alamos, New Mexico. (LANL 2013, 250035)

LANL (Los Alamos National Laboratory), August 2014. “NPDES Permit No. NM0030759 — Submittal of Analytical Results for Site 54-017 in Site Monitoring Area PJ-SMA-20,” Los Alamos National Laboratory, Los Alamos, New Mexico. (LANL 2014, 260188)

Appendix D, References (continued)

LANL (Los Alamos National Laboratory), August 13, 2015. “Request for Certificates of Completion for Nineteen Solid Waste Management Units and Two Areas of Concern in the Cañon de Valle Aggregate Area,” Los Alamos National Laboratory letter (ADESH-15-106) to J. Kieling (NMED-HWB) from A.M. Dorries (LANL) and C. Gelles (DOE EM-LA), Los Alamos, New Mexico. (LANL 2015, 600775)

LANL (Los Alamos National Laboratory), October 21, 2015. “NPDES Permit No. NM0030759 – Request for Permit Modification, Removal of Sites 16-010(b) (CDV-SMA-2.42), 16-010(c) (CDV-SMA-2.5), 16-010(d) (CDV-SMA-2.5, and 16-018 (CDV-SMA-2.41),” Los Alamos National Laboratory, Los Alamos, New Mexico. (LANL 2015, 600962)

LANL (Los Alamos National Laboratory), October 21, 2015. “NPDES Permit No. NM0030759 – Request for Permit Modification, Removal of Sites 03-045(b) and 03-045(c) (S-SMA-2),” Los Alamos National Laboratory, Los Alamos, New Mexico. (LANL 2015, 600961)
Appendix D, References (continued)

LANL (Los Alamos National Laboratory), February 26, 2016. “NPDES Permit No. NM0030759 – Alternative Compliance Request for 17 Site Monitoring Area/Site Combinations Exceeding Target Action Levels from Nonpoint Sources,” Los Alamos National Laboratory letter ADES-16-022 to P. Johnsey (EPA Region 6) and E. Spencer (EPA Region 6) from J. McCann (LANL) and D. Rhodes (DOE EM-LA), Los Alamos, New Mexico. (LANL 2016, 601239)

LANL (Los Alamos National Laboratory), August 31, 2016. “NPDES Permit NO. NM0030759 – Submittal of Analytical Results for Site 03-013(a) in Site Monitoring Area S-SMA-0.25 after Certification of a No Exposure Condition,” Los Alamos National Laboratory document LA-UR-16-26363, Los Alamos, New Mexico. (LANL 2016, 601772)

LANL (Los Alamos National Laboratory), September 21, 2016. “Upper Los Alamos Canyon Aggregate Area Cleanup Report(s) for SWMUs 01-001(g), 01-003(a), 01-003(b), 01-006(b), 01-007(a), 01-007(b), and C-43-01 to EM LA,” Los Alamos National Laboratory document LA-UR-16-27175, Los Alamos, New Mexico. (LANL 2016, 602474)

LANL (Los Alamos National Laboratory), September 26, 2016. “NPDES Permit No. NM0030759 - Submittal of Completion of Corrective Action for Two [2] Sites [16-017(a)-99 and 16-026(m)] in CDV-SMA-1.3 Following Certificates of Completion from the New Mexico Environment Department,” Los Alamos National Laboratory, Los Alamos, New Mexico. (LANL 2016, 601823)
Appendix D, References (continued)

LANL (Los Alamos National Laboratory), September 26, 2016. “NPDES Permit No. NM0030759 – Analytical Results for Site 03-003(k) in Site Monitoring Area 2M-SMA-2.2 after Certification of a No Exposure Condition,” Los Alamos National Laboratory document LA-UR-16-26789, Los Alamos, New Mexico. (LANL 2016, 601824)

LANL (Los Alamos National Laboratory), October 25, 2016. “NPDES Permit NO. NM0030759 – Analytical Results Following Completion of Corrective Action by Certification of a No Exposure Condition at Site 48-005 in M-SMA-4,” Los Alamos National Laboratory document LA-UR-16-27800, Los Alamos, New Mexico. (LANL 2016, 601918)

LANL (Los Alamos National Laboratory), October 27, 2016. “Request for a Class 1 Permit Modification to the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit, EPA ID No. NM0890010515,” Los Alamos National Laboratory letter (LA-UR-16-27951) to J. Kieling (NMED) from J. Bretzke (LANL) and D. Rhodes (DOE-LASO) (LANL 2016, 601921)

LANL (Los Alamos National Laboratory), May 25, 2017. “Response to the Notice of Disapproval of the Investigation Report for the Former Los Alamos Inn Property Sites within the Upper Los Alamos Canyon Aggregate Area and Revision 1,” Los Alamos National Laboratory letter (ADEM-17-0109, LA-UR-17-24005; LA-UR-17-24019) to J. Kieling (NMED) from B. Robinson (LANL) and D. Rhodes (DOE-LASO) (LANL 2017, 602404)

LANL (Los Alamos National Laboratory), June 15, 2017. “Request for Certificates of Completion without Controls for Nine Solid Waste Management Units and One Area of Concern in the Upper Los Alamos Canyon Aggregate Area,” Los Alamos National Laboratory letter (ADEM-17-0147) to J. Kieling (NMED) from B. Robinson (LANL) and D. Rhodes (DOE-LASO) (LANL 2017, 602455)

LANL (Los Alamos National Laboratory), September 26, 2017. “NPDES Permit No. NM0030759 – Sampling Implementation Plan Update on Sampling Location Evaluations Performed with New Mexico Environment Department Surface Water Quality Bureau,” Los Alamos National Laboratory Letter (ADESH-17-064) to E. Herrera (EPA) from J. Bretzke (LANL) and D. Rhodes (DOE-LASO) (LANL 2017 602635)

LANL (Los Alamos National Laboratory), November 2017. “NPDES Permit NO. NM0030759 – Analytical Results for Site 00-017 in Site Monitoring Area LA-SMA-1 after Certification of a No Exposure Condition,” Los Alamos National Laboratory document LA-UR-17-30372, Los Alamos, New Mexico. (LANL 2017, 602741)
Appendix D, References (continued)

LANL (Los Alamos National Laboratory), February 2, 2018. “Request for Certificates of Completion for Twenty-three Solid Waste Management Units and Four Areas of Concern in the Delta Prime Site Aggregate Area,” Los Alamos National Laboratory Letter (ADEM-18-0010) to J. Kieling (NMED-HWB) from B. Robinson (LANL) and D. Rhodes (DOE-LASO) (LANL 2018, 602874)

N3B (Newport News Nuclear BWXT-Los Alamos, LLC), October 11, 2018. “Class 1 Permit Modification Request Requiring Prior Approval to Add Solid Waste Management Unit 02-014 to the Los Alamos National Laboratory Hazardous Waste Facility Permit, EPA ID No. NM0890010515,” N3B Letter to J. Kieling (NMED-HWB) from F. Lockhart (N3B) and A. Duran (DOE EM-LA), Los Alamos, New Mexico. (N3B 2018, 700100)

N3B (Newport News Nuclear BWXT-Los Alamos, LLC), December 2018. “NPDES Permit No. NM0030759 – Analytical Results Following Completion of Corrective Action by Certification of a No Exposure Condition at Sites 54-014(d) and 54-017 in Site Monitoring Area PJ-SMA-18,” Newport News Nuclear BWXT-Los Alamos, LLC, document EM2018-0116, Los Alamos New Mexico. (N3B 2018, 700144)
Appendix D, References (continued)

N3B (Newport News Nuclear BWXT-Los Alamos, LLC), January 24, 2019. “Class 1 Permit Modification Request to Add Solid Waste Management Unit 40-003(a) and Area of Concern C-06-019 to Table K-1, Attachment K, and to Remove Area of Concern C-06-019 from Table K-3, Attachment K, of the Los Alamos National Laboratory Hazardous Waste Facility Permit, EPA ID No. NM0890010515,” Newport News Nuclear BWXT-Los Alamos, LLC, document EM2018-0151, Los Alamos New Mexico. (N3B 2019, 700202)

N3B (Newport News Nuclear BWXT-Los Alamos, LLC), May 16, 2019. “NPDES Permit No. NM0030759 – Completion of Corrective Action for One Site (05-004) in One Site Monitoring Area (M-SMA-12.6) Following Certificate of Completion from the New Mexico Environment Department,” Newport News Nuclear BWXT-Los Alamos, LLC, document EM2019-0139, Los Alamos, New Mexico. (N3B 2019, 700437)

Appendix D, References (continued)

NMED (New Mexico Environment Department), June 3, 1997. “Approval of Los Alamos and Pueblo Canyon RFI Workplan (Operable Unit 1049),” New Mexico Environment Department letter to T. Taylor (DOE-LAAO) and J. Jansen (ER Project) from R.S. Dinwiddie (NMED-HRMB), Santa Fe, New Mexico. (NMED 1997, 056362)

NMED (New Mexico Environment Department), January 23, 2008. “Approval of Los Alamos National Laboratory Proposal for No Further Action,” New Mexico Environment Department letter to D. Gregory (DOE-LASO) and D. McInroy (LANL) from J.P. Bearzi (NMED-HWB), Santa Fe, New Mexico. (NMED 2008, 100116)

NMED (New Mexico Environment Department), January 12, 2009. “Approval, Delta Prime Site Aggregate Area Phase II Work Plan, Revision 1,” New Mexico Environment Department letter to D. Gregory (DOE-LASO) and D. McInroy (LANL) from J.P. Bearzi (NMED-HWB), Santa Fe, New Mexico. (NMED 2009, 104978)

NMED (New Mexico Environment Department), April 6, 2010. “Approval, Request for Certificates of Completion for Two Solid Waste Management Units and Five Areas of Concern in the North Ancho Canyon Aggregate Area,” New Mexico Environment Department letter to G.J. Rael (DOE-LASO) and M.J. Graham (LANL) from J.P. Bearzi (NMED-HWB), Santa Fe, New Mexico. (NMED 2010, 110430)

NMED (New Mexico Environment Department), September 7, 2010. “Certificates of Completion, Upper Mortandad Canyon Aggregate Area,” New Mexico Environment Department letter to G.J. Rael (DOE-LASO) and M.J. Graham (LANL) from J.P. Bearzi (NMED-HWB), Santa Fe, New Mexico. (NMED 2010, 110665)

NMED (New Mexico Environment Department), October 19, 2010. “Direction to Modify Phase II Investigation Report for Delta Prime Site Aggregate Area, Technical Area 21, Revision 1,” New Mexico Environment Department letter to G.J. Rael (DOE-LASO) and M.J. Graham (LANL) from J.P. Bearzi (NMED-HWB), Santa Fe, New Mexico. (NMED 2010, 110959)
Appendix D, References (continued)

NMED (New Mexico Environment Department), January 14, 2011. “Certificate of Completion, Pueblo Canyon Aggregate Area, Area of Concern (AOC) 00-018(b),” New Mexico Environment Department letter to G.J. Rael (DOE-LASO) and M.J. Graham (LANL) from J.P. Bearzi (NMED-HWB), Santa Fe, New Mexico. (NMED 2011, 111673)

NMED (New Mexico Environment Department), February 18, 2011. “Certificates of Completion, Upper Sandia Canyon Aggregate Area,” New Mexico Environment Department letter to G.J. Rael (DOE-LASO) and M.J. Graham (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2011, 111821)

NMED (New Mexico Environment Department), May 4, 2011. “Certificates of Completion Request, Middle Mortandad/Ten Site Aggregate Area SWMUs and AOCs,” New Mexico Environment Department letter to G.J. Rael (DOE-LASO) and M.J. Graham (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2011, 203066)

NMED (New Mexico Environment Department), May 16, 2012. “Certificates of Completion, One Solid Waste Management Unit and One Area of Concern in the Guaje/Barrancas/Rendija Canyons Aggregate Area,” New Mexico Environment Department letter to P. Maggiore (DOE-LASO) and M.J. Graham (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2012, 520388)

NMED (New Mexico Environment Department), July 13, 2012. “Approval of Request for Certificates of Completion for Six Solid Waste Management Units and One Area of Concern in the Upper Cañada del Buey Aggregate Area,” New Mexico Environment Department letter to P. Maggiore (DOE-LASO) and M.J. Graham (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2012, 520940)

NMED (New Mexico Environment Department), May 18, 2015. “Certificates of Completion, Three Solid Waste Management Units, Middle Mortandad/Ten Site Aggregate Area,” New Mexico Environment Department letter to C. Gelles (DOE-NA-LA) and M.T. Brandt (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2015, 600446)

NMED (New Mexico Environment Department), October 14, 2015. “Certificates of Completion, Seventeen Solid Waste Management Units and Eight Areas of Concern at Technical Area 35, Middle Mortandad/Ten Site Aggregate Area,” New Mexico Environment Department letter to D. Hintze (DOE EM-LA) and M. Brandt (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2015, 600985)

NMED (New Mexico Environment Department), January 19, 2016. “Certificates of Completion, Two Areas of Concern and Twelve Solid Waste Management Units in the Delta Prime Site Aggregate Area,” New Mexico Environment Department letter to D. Hintze (DOE EM-LA) and M. Brandt (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2016, 601146)

NMED (New Mexico Environment Department), July 22, 2016. “Certificate of Completion, One Area of Concern C-00-041, in the Guaje/Barrancas/Rendija Canyons Aggregate Area,” New Mexico Environment Department letter to D. Hintze (DOE EM-LA) and M. Brandt (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2016, 601644)
Appendix D, References (continued)

NMED (New Mexico Environment Department), August 1, 2016. “Approval of Request for Certificates of Completion for Nineteen Solid Waste Management Units and Two Area of Concern in the Upper Cañon de Valle Aggregate Area,” New Mexico Environment Department letter to D. Hintze (DOE EM-LA) and M.T. Brandt (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2016, 601692)

NMED (New Mexico Environment Department), September 6, 2016. “Approval, Phase III Investigation Report for Delta Prime Site Aggregate Area at Technical Area 21, Revision 1,” New Mexico Environment Department letter to D. Hintze (DOE EM-LA) and M. Brandt (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2016, 601800)

NMED (New Mexico Environment Department), November 9, 2016. “Fee Assessment and Approval Request for a Class 1 Permit Modification to Revise Table K-1 of Attachment K of the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit EPA ID #NM0890010515,” New Mexico Environment Department letter to J. Bretzke (LANL) and D. Rhodes (DOE EM-LA) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2016 601988)

NMED (New Mexico Environment Department), January 31, 2017. “Approval of Request for Certificates of Completion for Three Areas of Concern and Twenty-Six Solid Waste Management Units in the Bayo Canyon Aggregate Area,” New Mexico Environment Department letter to D. Hintze (DOE EM-LA) and M. Brandt (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2017, 602136)

NMED (New Mexico Environment Department), June 6, 2017. “Approval Investigation Report for the Former Los Alamos Inn Property Sites within the Upper Los Alamos Canyon Aggregate Area, Revision 1,” New Mexico Environment Department letter to D. Hintze (DOE EM-LA) and B. Robinson (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2017, 602438)

NMED (New Mexico Environment Department), July 13, 2017. “Approval of Request for Certificates of Completion without Controls for Nine Solid Waste Management Units and One Area of Concern in the Upper Los Alamos Canyon Aggregate Area,” New Mexico Environment Department letter to D. Hintze (DOE EM-LA) and B. Robinson (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2017, 602514)

NMED (New Mexico Environment Department), September 4, 2018. “Request for Certificates of Completion for Twenty-Three Solid Waste Management Units and Four Areas of Concern in the Delta Prime Site Aggregate Area,” New Mexico Environment Department letter to D. Hintze (DOE EM-LA) and N. Lombardo (N3B) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2018, 700067)

NMED (New Mexico Environment Department), December 7, 2018. “Approval Class 1 Permit Modification Requiring Prior Approval to Add Solid Waste Management Unit 02-014 to the Los Alamos National Laboratory Hazardous Waste Facility Permit EPA ID #NM0890010515,” New Mexico Environment Department letter to D. Hintze (DOE EM-LA) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2018, 700146)
Appendix D, References (continued)

NMED (New Mexico Environment Department), February 8, 2019. “Approval Class 1 Permit Modification Request to Add Solid Waste Management Unit 40-003(a) and Area of Concern C-06-019 to Table K-1, Attachment K, and to Remove Area of Concern C-06-019 from Table K-3, Attachment K, of the Hazardous Waste Facility Permit Los Alamos National Laboratory EPA IE #NM0890010515,” New Mexico Environment Department letter to D. Hintze (DOE EM-LA) and G. Morgan (N3B) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2019, 700293)

NMED (New Mexico Environment Department), February 15, 2019. “Clarification Class 1 Permit Modification Request to Add Solid Waste Management Unit 40-003(a) and Area of Concern C-06-019 to Table K-1, Attachment K, and to Remove Area of Concern C-06-019 from Table K-3, Attachment K, of the Hazardous Waste Facility Permit Los Alamos National Laboratory EPA IE #NM0890010515,” New Mexico Environment Department letter to D. Hintze (DOE EM-LA) and G. Morgan (N3B) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2019, 700294)

NMED (New Mexico Environment Department), March 20, 2019. “Request for Certificates of Completion for Four Solid Waste Management Units in the Lower Mortandad/Cedro Canyons Aggregate Area,” New Mexico Environment Department letter to D. Hintze (DOE EM-LA) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2019, 700344)

NMED (New Mexico Environment Department), June 24, 2019. “Disapproval Request for Certificates of Completion for SWMUs in the Delta Prime Site Aggregate Area,” New Mexico Environment Department letter to D. Hintze (DOE EM-LA) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2019, 700487)

NMED (New Mexico Environment Department), October 22, 2019. “Clarification Certificate of Completion with Controls for Solid Waste Management Unit 03-055(c) in the Upper Los Alamos Canyon Aggregate Area,” New Mexico Environment Department letter to D. Hintze (DOE EM-LA) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2019, 700640)

NMED (New Mexico Environment Department), December 12, 2019. “Approval with Modifications Phase II Investigation Work Plan for Delta Prime Site Aggregate Area Sites at Delta Prime East and Delta Prime West,” New Mexico Environment Department letter to D. Hintze (DOE EM-LA) from D. Cobrain (NMED-HWB), Santa Fe, New Mexico. (NMED 2019, 700713)
