

DEPARTMENT OF ENERGY

Environmental Management Los Alamos Field Office (EM-LA) Los Alamos, New Mexico 87544

EMLA-23-BF92-2-1

Mr. Rick Shean Bureau Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505-6313

December 23, 2022

Subject:

Monthly Notification of Groundwater Data Reviewed in December 2022

Dear Mr. Shean:

This letter is the written submission of the U.S. Department of Energy (DOE) Environmental Management Los Alamos Field Office (EM-LA) and Newport News Nuclear BWXT-Los Alamos, LLC (N3B) in accordance with Section XXVI.D of the 2016 Compliance Order on Consent (2016 Consent Order). Members of EM-LA and N3B met on December 15, 2022, to review groundwater data loaded or released in the Environmental Information Management system during the previous calendar month. The enclosed report was prepared by comparing the data against groundwater notification criteria as defined in Section IX of the 2016 Consent Order. These criteria consider New Mexico Water Quality Control Commission (NMWQCC) groundwater standards, U.S. Environmental Protection Agency (EPA) maximum contaminant levels (MCLs), New Mexico Environment Department (NMED) screening levels for tap water, EPA regional screening levels for tap water, and NMED-approved background values for hydrogeological zones as set forth in the "Groundwater Background Investigation Report, Revision 5." The EPA tap water standard's carcinogenic risk values were adjusted to 1 × 10⁻⁵, as specified in the 2016 Consent Order.

The enclosed report was prepared using the November 2022 EPA regional screening levels for tap water; the NMWQCC groundwater standards published December 21, 2018; and the June 2022 Table A-1 of "Risk Assessment Guidance for Site Investigations and Remediation" for NMED tap water screening levels.

This report also includes analytical data from samples collected at a location within the Pueblo de San Ildefonso, which are subject to reporting at this time. These data have been reviewed by the Pueblo, as required under the 2014 Memorandum of Agreement (as amended in 2015) between the DOE National Nuclear Security Administration Los Alamos Field Office, EM-LA, and the Pueblo de San Ildefonso.

1-Day Notification

One instance of a constituent was detected at a concentration that exceeded the NMWQCC groundwater standard or EPA MCL at one location where that constituent had not previously been detected above the respective standard as defined in the 2016 Consent Order (based on samples collected since June 14, 2007). EM-LA notified NMED orally, within one business day of the review of the analytical

data that showed detection of the contaminant, on December 16, 2022 (per Section XXVI.C of the Consent Order).

Analysis of an unfiltered water sample collected from Spring 4 on October 13, 2022, resulted in the measurement of one constituent at a value exceeding its screening level value. Benzo(a)anthracene was measured at $0.384 \mu g/L$, exceeding the $0.12-\mu g/L$ NMWQCC groundwater standard.

15-Day Notification

The information required for constituents that meet the five reporting criteria requiring written notification within 15 days is provided in the enclosed report and tables.

If you have questions, please contact Amanda White at (505) 309-1366 (amanda.white@em-la.doe.gov) or Hai Shen at (505) 709-7600 (hai.shen@em.doe.gov).

Sincerely,

For M Lee Bishop Digitally signed by For M Lee Bishop Date: 2022.12.22 12:35:32

Arturo Q. Duran
Compliance and Permitting Manager
U.S. Department of Energy
Environmental Management
Los Alamos Field Office

-07'00'

Enclosure(s):

1. Summary of Groundwater Data Reviewed in December 2022 that Meet Notification Requirements (EM2022-0968)

cc (letter with CD/DVD enclosure[s]): Steven Lynne, Los Alamos County, Los Alamos, NM (2 copies)

cc (letter and enclosure[s] emailed):
Laurie King, EPA Region 6, Dallas, TX
Raymond Martinez, San Ildefonso Pueblo, NM
Dino Chavarria, Santa Clara Pueblo, NM
David Gomez, Los Alamos County, Los Alamos, NM
Steve Yanicak, NMED-DOE-OB
Justin Ball, NMED-GWQB
Andrew C. Romero, NMED-GWQB
Melanie Sandoval, NMED-GWQB

Jocelyn Buckley, LANL

Leslie Dale, LANL

J'nette Hyatt, LANL

Brian Iacona, LANL

William Mairson, LANL

Jennifer Payne, LANL

Karen Armijo, NA-LA

Stephen Hoffman, NA-LA

Felicia Aguilar, N3B

William Alexander, N3B

Mei Ding, N3B

Vicky Freedman, N3B

Kim Lebak, N3B

Joseph Legare, N3B

Christian Maupin, N3B

Nancy McDuffie, N3B

Keith McIntyre, N3B

Bruce Robinson, N3B

Troy Thomson, N3B

Amanda White, N3B

Brinson Willis, N3B

M. Lee Bishop, EM-LA

Michael Mikolanis, EM-LA

David Nickless, EM-LA

Cheryl Rodriguez, EM-LA

Hai Shen, EM-LA

emla.docs@em.doe.gov

n3brecords@em-la.doe.gov

Public Reading Room (EPRR)

PRS website

SUMMARY OF GROUNDWATER DATA REVIEWED IN DECEMBER 2022 THAT MEET NOTIFICATION REQUIREMENTS

INTRODUCTION

This report provides information to the New Mexico Environment Department (NMED) concerning recent groundwater monitoring data obtained by Newport News Nuclear BWXT-Los Alamos, LLC (N3B) under the annual "Interim Facility-Wide Groundwater Monitoring Plan" for the 2022 monitoring year (N3B 2021, 701672) and contains results for contaminants and other chemical constituents that meet the five screening criteria described in Section XXVI of the 2016 Compliance Order on Consent, modified February 2017 (2016 Consent Order). The report covers groundwater samples collected from wells or springs (listed in the accompanying tables) that provide surveillance of the hydrogeological zones at Los Alamos National Laboratory, as indicated in the tables.

The report includes two tables. Table 1, NMED 11-22 Groundwater Report, presents categorical results since June 14, 2007, that met the five reporting criteria as specified in the 2016 Consent Order. Table 2, NMED 11-22 Groundwater Report Addendum, presents results that exceed the 95th percentile of those results in the data set defined in the "Groundwater Background Investigation Report, Revision 5" (IR) (LANL 2016, 601920). Only the contaminants and other chemical constituents that lack a calculated groundwater background value (i.e., the frequency of detections was too low to calculate a background value at the 95% upper tolerance level) are listed in this table. Table 2 is a voluntary submission by N3B to NMED that identifies the potential risk resulting from contaminants and other chemical constituents that are without defined background values.

These tables include the following:

- Comments on results that appear to be exceptional based on consideration of monitoring data acquired from previous analyses (using statistics described below);
- Supplemental information summarizing monitoring results obtained from previous analyses; and
- Sampling date, name of the well or spring, location of the well or spring, depth of the screened interval, groundwater zone sampled, analytical result, detection limit, values for regulatory standards or screening levels, and analytical and secondary validation qualifiers.

Additional information describing the locations and analytical data is also included. All data have been through secondary validation.

This report was prepared by comparing the data against groundwater notification criteria as defined in Section IX of the 2016 Consent Order. These criteria consider New Mexico Water Quality Control Commission (NMWQCC) groundwater standards, U.S. Environmental Protection Agency (EPA) maximum contaminant levels (MCLs), NMED screening levels for tap water, EPA regional screening levels for tap water, and NMED-approved background values for hydrogeological zones as set forth in the IR. The EPA tap water standard's carcinogenic risk values were adjusted to 1 x 10⁻⁵, as specified in the 2016 Consent Order. This report was prepared using the November 2022 EPA regional screening levels for tap water; the NMWQCC groundwater standards published December 21, 2018; and the NMED tap water screening levels specified in the June 2022 Table A-1 of "Risk Assessment Guidance for Site Investigations and Remediation" (Risk Assessment Guidance) (NMED 2022, 702141).

Background values applied in Table 1 notification criterion C4 are the background values for hydrogeological zones as set forth in the IR.

Screening values applied in Table 2 criteria XC2scr and XC4scr are the 95th percentile of the data set used to establish background as defined in the IR.

DESCRIPTION OF TABLES

1-Day Notification Requirement

The CA value is used in the Criteria Code column of Table 1. The CA value indicates detection of a contaminant in a well screen interval or spring at a concentration that exceeds either the NMWQCC water quality standard or the EPA MCL, if that contaminant has not previously exceeded such a water quality standard at that location. N3B, under the U.S. Department of Energy Environmental Management Los Alamos Field Office, notifies NMED orally within 1 business day after review of such analytical data and also includes the data in the 15-day notification table.

15-Day Notification Requirement

Table 1 is divided into separate categories that correspond to the five screening criteria in Section XXVI of the 2016 Consent Order. In several cases, data met more than one of the notification criteria and therefore appear in the table multiple times.

The criteria codes (the "C" stands for criterion) and their definitions are as follows:

- C1. Detection of a contaminant that is an organic compound in a spring or screened interval of a well if that contaminant has not previously been detected in the spring or screened interval
- C2. Detection of a contaminant that is a metal or other inorganic compound at a concentration above the background level in a spring or screened interval of a well if that contaminant has not previously exceeded the background level in the spring or screened interval
- C3. Detection of a contaminant in a spring or screened interval of a well at a concentration that (1) exceeds the lower of either one-half the NMWQCC water quality standard or one-half the federal MCL, or, if there is no such standard for the contaminant, (2) exceeds one-half the tap water screening levels in Table A-1 of NMED's Risk Assessment Guidance, or, if there is no NMED tap water screening level available for a contaminant, (3) exceeds one-half the EPA regional human health medium-specific screening level for tap water if that contaminant has not previously exceeded one-half such standard or screening level in the spring or screened interval
- C4. Detection of a contaminant that is a metal or other inorganic compound in a spring or screened interval of a well at a concentration that exceeds 2 times the background level for the third consecutive sampling of the spring or screened interval
- C5. Detection of a contaminant in a spring or screened interval of a well at a concentration that exceeds either one-half the NMWQCC water quality standard or one-half the federal MCL and which has increased for the third consecutive sampling of that spring or screened interval

Table 2 is divided into two categories that correspond to two screening criteria. They mirror criteria C2 and C4 in Table 1, respectively.

The two criteria are as follows:

XC2scr Detection of a contaminant that is a metal or other inorganic compound at a concentration above the 95th percentile in a spring or screened interval of a well, if that contaminant has not previously exceeded the 95th percentile of the data set used to establish background in the spring or screened interval as defined in the IR

XC4scr Detection of a contaminant that is a metal or other inorganic compound in a spring or screened interval of a well at a concentration that, for the third consecutive sampling, exceeds 2 times the 95th percentile of the data set used to establish background as defined in the IR

Columns 2 through 7 in both tables provide summary statistics for metals or organic/inorganic compounds by field preparation code (e.g., filtered aluminum) for samples collected since January 1, 2000, including the currently reported data. The statistics include the date of the first sampling event; the number of sampling events and samples analyzed; the number of detections; and the minimum, maximum, and median concentration for detections. This information indicates whether the new result is consistent with the range of earlier data.

The subsequent columns contain location and sampling information as follows:

Canyon—canyon where monitoring location is found

Zone—hydrogeological zone from which the groundwater sample was collected (e.g., alluvial spring)

Location—monitoring location name

Screen Depth—depth of top of well screen in feet (0 for springs, -1 if unknown)

Start Date—date the sample was collected

Fld QC Type Code—identifies regular samples (REG) or field duplicates (FD)

Fld Prep Code—identifies whether samples are filtered (F) or unfiltered (UF)

Lab Sample Type Code—indicates whether result is a primary sample (INIT) or reanalysis (RE)

Analy Suite Code—analytical suite (such as volatile organic compounds) for analyzed compound

Analyte Description—name of analyte

Analyte—chemical symbol for analyte or CAS (Chemical Abstracts Service) number for organic compounds

Std Result—analytical result in standard measurement units

Result/Median—ratio of the Std Result to the median of all detections since 2000

LVL Type/Risk Code—type of regulatory standard, screening level, or background value (indicating groundwater zone) used for comparison

Screen Level—value of the LVL Type/Risk Code

Exceedance Ratio—ratio of Std Result to LVL Type/Risk Code. In earlier versions of this report, the ratio was divided by the basis for comparison in the criterion, but that is no longer the case. For example, for a criterion (such as C3) that compares the value with one-half the standard, a value equal to a standard previously had an exceedance ratio of 2. The current report shows this ratio as 1.

Std MDL—method detection limit in standard measurement units

Std UOM—standard units of measurement

Dilution Factor—amount by which the sample was diluted to measure the concentration

Lab Qualifier—analytical laboratory qualifier indicating analytical quality of the sample data

Validation Qualifier—the qualifier that indicates the effects of all processes associated with the sample (i.e., sample collection, additional quality control samples such as field duplicates, etc.) on the quality of the sample data

Validation Reason Code—an explanation of the reason for validation of the qualifiers

Analy Meth Code—analytical method number

Lab Code—analytical laboratory name

Comment—N3B comment regarding the analytical result

Acronyms and Abbreviations

The tables may include the following acronyms, abbreviations, and analytical laboratory codes and qualifiers:

CFA—Cape Fear Analytical, LLC

DOECAP—Department of Energy Consolidated Audit Program

DNX—hexahydro-1,3-dinitro-5-nitro-1,3,5-triazine

EPA MCL—U.S. Environmental Protection Agency maximum contaminant level

F—filtered

FD—field duplicate

GELC—GEL Laboratories, LLC, Division of the GEL Group, Charleston, SC

GENINORG—General inorganic

HEXP—high explosive

HMX—octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

HRGC/HRMS—high-resolution gas chromatography/high-resolution mass spectrometry

ICP-AES—inductively coupled plasma atomic emission spectroscopy

ICP-MS—inductively coupled plasma mass spectrometry

INIT—primary sample

LANL Int BG LV—Los Alamos National Laboratory intermediate background level

LANL Reg BG LV—Los Alamos National Laboratory regional background level

LCMS/MS—liquid chromatography mass spectrometry/mass spectrometry

LCS—laboratory control sample

MDL—method detection limit

MNX—hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine

MS-matrix spike

MSD—matrix spike duplicate

n/a-not applicable

NM GW STD—New Mexico Water Quality Control Commission groundwater standard

NMED A1 TAP SCRN LVL—New Mexico Environment Department Table A-1 screening level for tap water

NTU—nephelometric turbidity unit

PETN—pentaerythritol tetranitrate

PFAS—per- and polyfluoroalkyl substances

PQL—practical quantitation limit

RDX—Royal Demolition Explosive (hexahydro-1,3,5-trinitro-1,3,5-triazine)

RE—reanalysis

REG—regular sample

RC—probable reducing condition. A near-well condition likely affects some sample water quality parameter values from those of upgradient ambient water.

RL—reporting limit

RPD—relative percent difference

SIM—selected ion monitoring

SVOC—semivolatile organic compound

SwRI—Southwest Research Institute

TDS—total dissolved solids

TNX—2,4,6-trinitroxylene

UAL—upper acceptance limit

UF-unfiltered

UOM—unit of measurement

VOC-volatile organic compound

Analytical Laboratory Codes and Qualifiers

* (lab qualifier)—A quality control analyte recovery is outside of specified acceptance criteria.

B (lab qualifier)—Target analyte was detected in the associated blank.

H (lab qualifier)—Analytical holding time was exceeded.

HE1a (validation reason code)—The quantitating internal standard area count is less than the rejection limit of the expected value.

HE4f (validation reason code)—There is evidence of cross-contamination.

HE12a (validation reason code)—The laboratory control sample percent recovery was less than the lower acceptance limit and greater than or equal to the rejection limit.

HR4g (validation reason code)—The detected sample result is greater than or equal to 5 times and less than 100 times the detected concentration of the same analyte in the associated blank.

HR12a (validation reason code)—The laboratory control sample or ongoing precision and recovery sample percent recovery was less than the lower acceptance limit and greater than or equal to the rejection limit.

HR12e (validation reason code)—The matrix spike percent recovery was less than the lower control limit.

I4a (validation reason code)—The detected sample result is greater than or equal to 5 times and less than 100 times the concentration of the same analyte in the method blank.

I4g (validation reason code)—The detected sample result is greater than or equal to 5 times and less than 100 times the concentration of the same analyte in the associated blank.

I6a (validation reason code)—The associated matrix spike percent recovery is less than the lower acceptance limit.

I6b (validation reason code)—The associated matrix spike percent recovery is greater than the upper acceptance limit.

17h (validation reason code)—The initial or continuing calibration blank result is greater than method detection limit, and the detected sample result is greater than or equal to 5 times and less than 100 times the blank result.

19 (validation reason code)—The extraction or analytical holding time was exceeded but was less than or equal to 2 times the appropriate holding time.

I9c (validation reason code)—The non-aqueous mercury, chromium(VI), or general chemistry sample temperature was greater than 10°C upon receipt at the laboratory.

I10a (validation reason code)—The sample and the duplicate sample results are greater than or equal to 5 times the reporting limit, and the duplicate sample relative percent difference is greater than 20% for water samples and greater than 35% for soil samples, or outside of the laboratory's limits.

I10ea—The sample or laboratory duplicate result is <5 times the reporting limit and the absolute difference between sample and duplicate result exceeds the limits.

I10er (validation reason code)—The sample and laboratory duplicate results are ≥5 times the reporting limit and the relative percent difference exceeds the limits.

I10fa—The sample or field duplicate result is <5 times the reporting limit, and the absolute difference between sample and duplicate result exceeds the limits.

I10k (validation reason code)—Level 3 data validation identified duplicate sample issues affecting data usability.

I19 (validation reason code)—The data validator identified quality deficiencies in the reported data that require further qualification. The best value flag of the original result is also changed to N.

- J (lab qualifier)—Value is estimated.
- J (validation qualifier)—The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J- (validation qualifier)—The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample but likely to have a low bias.
- J+ (validation qualifier)—The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample but likely to have a high bias.
- J_LAB (validation reason code)—The analytical laboratory qualified the detected result as estimated (J) because the result was less than the PQL but greater than the MDL.

N (lab qualifier)—Spiked sample recovery is not within control limits.

NQ (validation qualifier)—No validation qualifier flag is associated with this result, and the analyte is classified as detected.

NQ (validation reason code)—The analytical laboratory did not qualify the analyte as not detected and/or with any other standard qualifier. The analyte is detected in the sample.

PE9—The holding time was greater than the applicable holding-time requirement and was ≤2 times the applicable holding-time requirement.

PE9c (validation reason code)—The sample temperature was greater than 6°C, or the sample preservation criteria was not met, upon receipt at the laboratory.

PE12e (validation reason code)—The matrix spike or matrix spike duplicate percent recovery was less than the lower acceptance limit.

SV7b (validation reason code)—The initial or continuing calibration verification relative response factor is less than the laboratory's lower limit.

SV7c (validation reason code)—The initial and/or continuing calibration verification recoveries are outside the appropriate limits.

SV8 (validation reason code)—The affected analyte is considered not detected because mass spectrum did not meet specifications.

SV9 (validation reason code)—The holding time was greater than 1 time and less than 2 times the applicable holding-time requirement.

SV12a—The laboratory control sample percent recovery is less than the lower acceptance limit and greater than or equal to the rejection limit.

SV12e—The matrix spike percent recovery is less than the lower acceptance limit.

V7b (validation reason code)—The initial or continuing calibration verification relative response factor was less than the laboratory's lower limit.

V7k (validation reason code)—Level 3 data validation identified calibration issues affecting data usability.

REFERENCES

- LANL (Los Alamos National Laboratory), October 27, 2016. "Groundwater Background Investigation Report, Revision 5," Los Alamos National Laboratory document LA-UR-16-27907, Los Alamos, New Mexico. (LANL 2016, 601920)
- N3B (Newport News Nuclear BWXT-Los Alamos, LLC), September 2021. "Interim Facility-Wide Groundwater Monitoring Plan for the 2022 Monitoring Year, October 2021–September 2022, Revision 1," Newport News Nuclear BWXT-Los Alamos, LLC, document EM2021-0535, Los Alamos, New Mexico. (N3B 2021, 701672)
- NMED (New Mexico Environment Department), June 2022. "Risk Assessment Guidance for Site Investigations and Remediation, Volume 1, Soil Screening Guidance for Human Health Risk Assessments," Hazardous Waste Bureau and Ground Water Quality Bureau, Santa Fe, New Mexico. (NMED 2022, 702141)

Table 1: NMED 11-22 Groundwater Report

Tabl	# 1. IN	MEDI	1-22 G	ouna	water	керо	ort		-																				-		
Criteria Code	Visits	Samples	First Event	Min Detect	Max Detect	Median Detect	Num Detect	Canyon	Zone	Location	Screen Depth	Start Date	Fld QC Type Code	Prep Code	Lab Sample Type Code	Anyl Suite Code	Analyte Desc	Analyte	Std Result	Result/Median	LVL Type/Risk Code	Screen Level	Exceedance Ratio	Std MDL	Std UOM	Dilution Factor	Lab Qualifier	Validation Qualifier Validation Reason Code	Anyl Meth Code	Lab Code	Comment
CA	21 27	7 09/24	4/2001	0.384	0.384	0.384	1	White Rock Canyor and Rio Grande	Regional Spring	Spring 4	0	10/13/2022	REG	UF IN	IIT S	SVOC	Benzo(a)anthracene	56-55-3	0.384	1	NMED A1 TAP SCRN LVL	0.12	3.2	0.288	ug/L	1.00	J J	l- SV12e	SW-846:8270E	GELC	
C1	21 27	09/24	4/2001	0.384	0.384	0.384	1	White Rock Canyor and Rio Grande	Regional Spring	Spring 4	0	10/13/2022	REG	UF IN	IIT S	SVOC	Benzo(a)anthracene	56-55-3	0.384	1	NMED A1 TAP SCRN LVL	0.12	3.2	0.288	ug/L	1.00	J J	l- SV12e	SW-846:8270E	GELC	
C1	21 27	7 09/24	4/2001	0.355	0.355	0.355	1	White Rock Canyor and Rio Grande	Regional Spring	Spring 4	0	10/13/2022	REG	UF IN	IIT S	SVOC	Chrysene	218-01-9	0.355	1	NMED A1 TAP SCRN LVL	34.3	0	0.288	ug/L	1.00	J J	l- SV12a	SW-846:8270E	GELC	
C1	21 26	09/24	4/2001	0.403	1.1	0.7515	2	White Rock Canyor and Rio Grande	Regional Spring	Spring 4	0	10/13/2022	REG	UF IN	IIT S	SVOC	Di-n-butylphthalate	84-74-2	0.403	0.5	NMED A1 TAP SCRN LVL	885	0	0.288	ug/L	1.00	J J	J_LAB	SW-846:8270E	GELC	
C1	20 26	09/24	4/2001	0.327	0.327	0.327	1	White Rock Canyor and Rio Grande	Regional Spring	Spring 4	0	10/13/2022	REG	UF IN	IIT S	SVOC	Phenanthrene	85-01-8	0.327	1	NMED A1 TAP SCRN LVL	170	0	0.288	ug/L	1.00	J J	- SV12a	SW-846:8270E	GELC	
C1	2 2	10/01	1/2019	0.116	0.116	0.116	1	White Rock Canyor and Rio Grande	Regional Spring	Spring 4AA	0	10/03/2022	REG	UF IN		.ow-level ,4-dioxane	Dioxane[1,4-]	123-91-1	0.116	1	NMED A1 TAP SCRN LVL	4.59	0	0.100	ug/L	1.00	J J	J_LAB	SW-846:8270E_SIM	GELC	
C3	21 27	9/24/2	/2001	0.384	0.384	0.384	1	White Rock Canyor and Rio Grande	Regional Spring	Spring 4	0	10/13/2022	REG	UF IN	IIT S	SVOC	Benzo(a)anthracene	56-55-3	0.384	1	NMED A1 TAP SCRN LVL	0.12	3.2	0.288	ug/L	1.00	J J	- SV12e	SW-846:8270E	GELC	
C4	27 29	08/04	4/2020	11.1	19.3	15.2	29	Mortandad Canyon	Regional Deep	R-70 S2*	1048.0	10/26/2022	REG	F IN	IIT G	eninorg	Chloride	CI(-1)	12.5	0.8	LANL Reg BG LVL	2.7	4.6	0.134	mg/L	2.00	١	NQ NQ	EPA:300.0	GELC	
C4	27 29	08/04	4/2020	131	272	194	29	Mortandad Canyon	Regional Deep	R-70 S2*	1048.0	10/26/2022	REG	F IN	IIT N	Metals	Chromium	Cr	153	0.8	LANL Reg BG LVL	7.48	20.5	3.00	ug/L	1.00	١	NQ NQ	SW-846:6020B	GELC	
C4	27 29	08/04	4/2020	2.59	4.06	3.59	29	Mortandad Canyon	Regional Deep	R-70 S2*	1048.0	10/26/2022	REG	F IN	IIT G	Seninorg	Nitrate-Nitrite as Nitrogen	NO3+NO2-N	3.27	0.9	LANL Reg BG LVL	0.769	4.3	0.0850	mg/L	5.00	١	NQ NQ	EPA:353.2	GELC	
C4	27 30	08/04	4/2020	2.13	2.92	2.46	30	Mortandad Canyon	Regional Top	R-70 S1*	963.0	10/26/2022	REG	F IN	IIT G	Seninorg	Nitrate-Nitrite as Nitrogen	NO3+NO2-N	2.45	1	LANL Reg BG LVL	0.769	3.2	0.0850	mg/L	5.00	١	NQ NQ	EPA:353.2	GELC	
C4	27 29	08/04	4/2020	17.5	32.6	24.2	29	Mortandad Canyon	Regional Deep	R-70 S2*	1048.0	10/26/2022	REG	F IN	IIT G	Seninorg	Sulfate	SO4(-2)	20.0	0.8	LANL Reg BG LVL	4.59	4.4	0.133	mg/L	1.00	١	NQ NQ	EPA:300.0	GELC	
C4	00 12	21 05/17	7/2005	2.27	7.43	5.56	121	Sandia Canyon	Regional Top	R-11	855.0	10/17/2022	FD	F IN	IIT G	Seninorg	Nitrate-Nitrite as Nitrogen	NO3+NO2-N	7.38	1.3	LANL Reg BG LVL	0.769	9.6	0.170	mg/L	10.0	J	l+ l6b	EPA:353.2	GELC	
C4	00 12	21 05/17	7/2005	2.27	7.43	5.56	121	Sandia Canyon	Regional Top	R-11	855.0	10/17/2022	REG	F IN	IIT G	Seninorg	Nitrate-Nitrite as Nitrogen	NO3+NO2-N	7.37	1.3	LANL Reg BG LVL	0.769	9.6	0.170	mg/L	10.0	J	l+ l6b	EPA:353.2	GELC	
C4	00 12	21 05/17	7/2005	5.95	20.2	9.67	121	Sandia Canyon	Regional Top	R-11	855.0	10/17/2022	FD	F IN	IIT G	Seninorg	Sulfate	SO4(-2)	9.85	1	LANL Reg BG LVL	4.59	2.1	0.133	mg/L	1.00	J	l+ I4a	EPA:300.0	GELC	
C4	00 12	21 05/17	7/2005	5.95	20.2	9.67	121	Sandia Canyon	Regional Top	R-11	855.0	10/17/2022	REG	F IN	IIT G	eninorg	Sulfate	SO4(-2)	9.79	1	LANL Reg BG LVL	4.59	2.1	0.133	mg/L	1.00	J	l+ I4a	EPA:300.0	GELC	
C4	88 10	08/30	0/2007	68	408	348	101	Sandia Canyon	Regional Deep	R-35a	1013.1	10/21/2022	REG	F IN	IIT N	/letals	Barium	Ва	328	0.9	LANL Reg BG LVL	38.1	8.6	1.00	ug/L	1.00	١	NQ NQ	SW-846:6010D	GELC	
C4	37 10	01 08/30	0/2007	5.97	7.31	6.58	101	Sandia Canyon	Regional Deep	R-35a	1013.1	10/21/2022	REG	F IN	IIT G	Seninorg	Chloride	CI(-1)	6.68	1	LANL Reg BG LVL	2.7	2.5	0.0670	mg/L	1.00	١	NQ NQ	EPA:300.0	GELC	
C4	88 10	08/30	0/2007	1.2	28.4	8.285	100	Sandia Canyon	Regional Deep	R-35a	1013.1	10/21/2022	REG	F IN	IIT N	Metals	Nickel	Ni	19.6	2.4	LANL Reg BG LVL	2.9	6.8	0.600	ug/L	1.00	١	NQ NQ	SW-846:6020B	GELC	
C4	88 94	1 02/28	8/2009	3	21.5	5.615	94	Mortandad Canyon	Regional Top	R-45 S1	880.0	10/25/2022	REG	F IN	IIT G	Seninorg	Chloride	CI(-1)	19.5	3.5	LANL Reg BG LVL	2.7	7.2	0.335	mg/L	5.00	N	NQ NQ	EPA:300.0	GELC	
C4	88 94	1 02/28	8/2009	0.535	13.8	1.29	79	Mortandad Canyon	Regional Top	R-45 S1	880.0	10/25/2022	REG	F IN	IIT N	/letals	Nickel	Ni	13.0	10.1	LANL Reg BG LVL	2.9	4.5	0.600	ug/L	1.00	N	NQ NQ	SW-846:6020B	GELC	
C4	88 94	1 02/28	8/2009	0.256	3.47	2.85	94	Mortandad Canyon	Regional Top	R-45 S1	880.0	10/25/2022	REG	F IN	IIT G	Seninorg	Nitrate-Nitrite as Nitrogen	NO3+NO2-N	3.01	1.1	LANL Reg BG LVL	0.769	3.9	0.0850	mg/L	5.00	١	NQ NQ	EPA:353.2	GELC	
C4	88 94	1 02/28	8/2009	4.1	21.4	8.565	94	Mortandad Canyon	Regional Top	R-45 S1	880.0	10/25/2022	REG	F IN	IIT G	Seninorg	Sulfate	SO4(-2)	19.6	2.3	LANL Reg BG LVL	4.59	4.3	0.133	mg/L	1.00	N	NQ NQ	EPA:300.0	GELC	
C4	37 92	2 03/05	5/2009	2.74	8.15	4.85	92	Mortandad Canyon	Regional Deep	R-45 S2	974.9	10/25/2022	REG	F IN	IIT G	eninorg	Chloride	CI(-1)	8.03	1.7	LANL Reg BG LVL	2.7	3	0.0670	mg/L	1.00	N	NQ NQ	EPA:300.0	GELC	
C4	37 97	7 03/05	5/2009	6.1	69.1	29.65	96	Mortandad Canyon	Regional Deep	R-45 S2	974.9	10/25/2022	REG	F IN	IIT N	/letals	Chromium	Cr	69.1	2.3	LANL Reg BG LVL	7.48	9.2	3.00	ug/L	1.00	١	NQ NQ	SW-846:6020B	GELC	
C4	37 92	2 03/05	5/2009	3.37	12.4	5.985	92	Mortandad Canyon	Regional Deep	R-45 S2	974.9	10/25/2022	REG	F IN	IIT G	eninorg	Sulfate	SO4(-2)	9.66	1.6	LANL Reg BG LVL	4.59	2.1	0.133	mg/L	1.00	١	NQ NQ	EPA:300.0	GELC	
C4	'4 85	05/20	0/2011	2.03	51	26.55	84	Mortandad Canyon	Regional Top	R-61 S1	1125.0	10/17/2022	REG	F IN	IIT N	/letals	Chromium	Cr	41.3	1.6	LANL Reg BG LVL	7.48	5.5	3.00	ug/L	1.00	N	NQ NQ	SW-846:6020B	GELC	
C4	'4 85	5 05/20	0/2011	0.427	3.3	2.31	85	Mortandad Canyon	Regional Top	R-61 S1	1125.0	10/17/2022	REG	F IN	IIT G	Seninorg	Nitrate-Nitrite as Nitrogen	NO3+NO2-N	2.66	1.2	LANL Reg BG LVL	0.769	3.5	0.170	mg/L	10.0	١	NQ NQ	EPA:353.2	GELC	

EM2022-0968 9 December 2022

Table 1: NMED 11-22 Groundwater Report

_																														-
Criteria Code	Visits	Samples	First Event	Min Detect	Max Detect	Median Detect	Num Detect	Canyon	Zone	Location	Screen Depth	Start Date	Fld QC Type Code	Fid Prep Code	Suite Code	Analyte Desc	Analyte	Std Result	Result/Median	LVL Type/Risk Code	Screen Level	Exceedance Ratio	Std MDL	Std UOM	Dilution Factor	tualifier ation Qualifier	Validation Reason Code	Anyl Meth Code	Lab Code	Comment
C4	73	84 0	5/20/2011	2.96	17	12.25	84	Mortandad Canyon	Regional Top	R-61 S1	1125.0	10/17/2022	REG I	F INIT	LCMS/MS	Perchlorate	CIO4	9.94	8.0	LANL Reg BG LVL	0.414	24	0.100	μg/L	2.00	NQ NQ	SW-	/-846:6850	GELC	
C4	89	98 0	3/06/2010	4.68	22.4	11.9	98	Mortandad Canyon	Regional Top	R-50 S1	1077.0	10/27/2022	REG I	F INIT	Geninorg	Chloride	CI(-1)	21.2	1.8	LANL Reg BG LVL	2.7	7.9	0.335	mg/L	5.00	NQ NQ	EPA	A:300.0	GELC	
C4	90	99 0	3/06/2010	1.51	25.6	6.49	99	Mortandad Canyon	Regional Top	R-50 S1	1077.0	10/27/2022	REG I	F INIT	Metals	Nickel	Ni	9.00	1.4	LANL Reg BG LVL	2.9	3.1	0.600	μg/L	1.00	NQ NQ	SW-	/-846:6020B	GELC	
C4	90	100 0	3/06/2010	0.398	3.21	2.28	100	Mortandad Canyon	Regional Top	R-50 S1	1077.0	10/27/2022	REG I	F INIT	Geninorg	Nitrate-Nitrite as Nitrogen	NO3+NO2-N	3.12	1.4	LANL Reg BG LVL	0.769	4.1	0.0850	mg/L	5.00	NQ NQ	EPA	A:353.2	GELC	
C4	89	98 0	3/06/2010	7.22	21.5	15.6	98	Mortandad Canyon	Regional Top	R-50 S1	1077.0	10/27/2022	REG I	F INIT	Geninorg	Sulfate	SO4(-2)	20.6	1.3	LANL Reg BG LVL	4.59	4.5	0.665	mg/L	5.00	NQ NQ	EPA	A:300.0	GELC	
C4	21	23 0	9/24/2001	4.35	6.18	5.04	23	White Rock Canyon and Rio Grande	Regional Spring	Spring 3	0	10/03/2022	REG I	F INIT	Geninorg	Chloride	CI(-1)	6.01	1.2	LANL Reg BG LVL	2.7	2.2	0.0670	mg/L	1.00	NQ NQ	EPA	A:300.0	GELC	
C4	23	25 0	9/25/2000	6.17	7.74	6.7	25	White Rock Canyon and Rio Grande	Regional Spring	Spring 4	0	10/13/2022	REG I	F INIT	Geninorg	Chloride	CI(-1)	6.98	1	LANL Reg BG LVL	2.7	2.6	0.0670	mg/L	1.00	NQ NQ	EPA	A:300.0	GELC	
C4	23	25 0	9/25/2000	9.24	10.6	9.6	25	White Rock Canyon and Rio Grande	Regional Spring	Spring 4	0	10/13/2022	REG I	F INIT	Geninorg	Sulfate	SO4(-2)	9.84	1	LANL Reg BG LVL	4.59	2.1	0.133	mg/L	1.00	J+ I4a	EPA	A:300.0	GELC	
C4	16	16 0	9/26/2005	7.19	9.14	7.9	16	White Rock Canyon and Rio Grande	Regional Spring	Spring 4B	0	10/03/2022	REG I	F INIT	Geninorg	Chloride	CI(-1)	8.91	1.1	LANL Reg BG LVL	2.7	3.3	0.0670	mg/L	1.00	NQ NQ	EPA	A:300.0	GELC	
C4	16	16	9/26/2005	8.65	10.7	9.315	16	White Rock Canyon and Rio Grande	Regional Spring	Spring 4B	0	10/03/2022	REG	F INIT	Geninorg	Sulfate	SO4(-2)	9.74	1	LANL Reg BG LVL	4.59	2.1	0.133	mg/L	1.00	NQ NQ	EPA	A:300.0	GELC	
C4	20	21 0	9/27/2005	5.52	7.45	6.08	21	White Rock Canyon and Rio Grande	Regional Spring	Spring 4AA	0	10/03/2022	REG	F INIT	Geninorg	Chloride	CI(-1)	7.38	1.2	LANL Reg BG LVL	2.7	2.7	0.0670	mg/L	1.00	NQ NQ	EPA	A:300.0	GELC	
C4	20	21 0	9/27/2005	6.71	9.36	7.31	21	White Rock Canyon and Rio Grande	Regional Spring	Spring 4AA	0	10/03/2022	REG	F INIT	Geninorg	Sulfate	SO4(-2)	9.23	1.3	LANL Reg BG LVL	4.59	2	0.133	mg/L	1.00	NQ NQ	EPA	A:300.0	GELC	
C5	87	97 0	3/05/2009	6.1	69.1	29.65	96	Mortandad Canyon	Regional Deep	R-45 S2	974.9	10/25/2022	REG I	F INIT	Metals	Chromium	Cr	69.1	2.3	NM GW STD	50	1.4	3.00	μg/L	1.00	NQ NQ	SW-	/-846:6020B	GELC	

^{*} Data pertaining to a well drilled at a target angle from the vertical. Depth value represents linear feet along (down) the borehole.

Table 2: NMED 11-22 Groundwater Report Addendum

Part	Table 2: NMED 11-22 Groundwater Report Addendum																												
March Marc	XC2scr	65	71	10/23/2015	15.2	Xa W 18.8	Wedian 15.9	17 Mortandad Canyon			885.0	E B /17/2022	D Fld QC Type	☐ Lab Sample Type	Metals	Analyte Borou	B B	18.8	1.2	Reg-Scr_95 18.	Paceed 7 1	왕 15.0	β μg/L	Dilution		L Alidation Reason	Www. Anyl Meth Code	ਵੀ GELC	Detection may have been prompted by fumes from a
March No. Genome March No. G																													generator. Note that cyanide has neither been detected in previous samples nor in the subsequent 11/8/2022
A								and Rio Grande			0																		
A								and Rio Grande			0				ŭ	as Phosphorus									J				
A								and Rio Grande	1	3AA	0				ŭ	as Phosphorus									J				
and Risk Grands Accessor 12 14 072662000 0.0425 0.125 0.0078 3 White Rock Carryon Regional Spring S								and Rio Grande	1	4AA	0					as Phosphorus									J				
According Acco								and Rio Grande	1						, and the second	as Phosphorus									-				
According Acco								and Rio Grande							ŭ	as Phosphorus									,				
And Riso Grande Section Sectio						0.151		and Rio Grande							ŭ	as Phosphorus									J				
According Acco						/		and Rio Grande	1											_					J J				
Act Control Act Contro								and Rio Grande	1							as Phosphorus									J				
XC2scr 18 18 09/27/2000 0.0167 0.113 0.024 5 White Rock Caryon Regional Spring PA 0 10/04/2022 REG F INIT Geninorg Spring PA 0 10/04/2022 REG F INIT Metals Strontium Sr 224 0.9 Reg-Scr_95 74.4 3.2 1.00 µg/L 1.00 NQ NQ SW-846:6010D GELC SW-846:6010D								and Rio Grande	1						ŭ	as Phosphorus									NQ				
XC4scr R8 101 08/30/2007 137 199 169 101 Sandia Canyon Regional Deep R-35a 1013.1 10/21/2022 REG F INIT Metals Strontium Sr 161 1 Reg-Scr_95 74.4 2.2 1.00 µg/L 1.00 NQ NQ SW-846:6010D GELC	XC2scr							and Rio Grande	1						ŭ	as Phosphorus									J				
XC4scr 74 85 05/20/2011 0.0531 11.8 0.39 81 Mortandad Canyon Regional Top R-61 S1 1125.0 10/17/2022 REG F INIT Geninorg Total Phosphorus PO4-P 0.167 0.4 Reg-Scr_95 0.0822 2 0.0200 mg/L 1.00 J+ I4a EPA:365.4 GELC SCAPPORT REGIONAL CONTROL OF TOTAL Phosphorus PO4-P 0.167 0.4 Reg-Scr_95 0.082 2 0.0200 mg/L 1.00 J+ I4a EPA:365.4 GELC SCAPPORT REGIONAL CONTROL OF TOTAL Phosphorus PO4-P 0.167 0.4 Reg-Scr_95 0.082 2 0.0200 mg/L 1.00 J+ I4a EPA:365.4 GELC SCAPPORT REGIONAL CONTROL OF TOTAL Phosphorus PO4-P 0.167 0.4 Reg-Scr_95 0.082 2 0.0200 mg/L 1.00 J+ I4a EPA:365.4 GELC SCAPPORT REGIONAL CONTROL OF TOTAL Phosphorus PO4-P 0.167 0.4 Reg-Scr_95 0.082 2 0.0200 mg/L 1.00 J+ I4a EPA:365.4 GELC SCAPPORT REGIONAL CONTROL OF TOTAL Phosphorus PO4-P 0.167 0.4 Reg-Scr_95 0.082 2 0.0200 mg/L 1.00 J+ I4a EPA:365.4 GELC SCAPPORT REGIONAL CONTROL OF TOTAL Phosphorus PO4-P 0.167 0.4 Reg-Scr_95 0.082 2 0.0200 mg/L 1.00 J+ I4a EPA:365.4 GELC SCAPPORT REGIONAL CONTROL OF TOTAL Phosphorus PO4-P 0.167 0.4 Reg-Scr_95 0.082 2 0.0200 mg/L 1.00 J+ I4a EPA:365.4 GELC SCAPPORT REGIONAL CONTROL OF TOTAL Phosphorus PO4-P 0.167 0.4 Reg-Scr_95 0.082 2 0.0200 mg/L 1.00 J+ I4a EPA:365.4 GELC SCAPPORT REGIONAL CONTROL OF TOTAL Phosphorus PO4-P 0.167 0.4 Reg-Scr_95 0.082 2 0.0200 mg/L 1.00 J+ I4a EPA:365.4 GELC SCAPPORT REGIONAL CONTROL OF TOTAL Phosphorus PO4-P 0.167	XC2scr							and Rio Grande	1						ŭ	as Phosphorus				_					J				
XC4scr 89 98 03/06/2010 0.0691 0.271 0.1275 76 Mortandad Canyon Regional Top R-50 S1 1077.0 10/27/2022 REG F INIT Metals Strontium Sr 239 1 Reg-Scr_95 74.4 3.2 1.00 µg/L 1.00 NQ NQ SW-846:6010D GELC S	XC4scr	88						101 Sandia Canyon	Regional Deep		1013.1			INIT	Metals			161	1	Reg-Scr_95 74.	4 2.2	1.00			NQ	NQ			
XC4scr 19 21 10/06/2003 220 256 238 21 White Rock Canyon Regional Spring 3 0 10/03/2022 REG F INIT Metals Strontium Sr 224 0.9 Reg-Scr_95 74.4 3 1.00 μg/L 1.00 NQ NQ SW-846:6010D GELC SVC4scr 21 27 09/25/2000 210 250 232 27 White Rock Canyon Regional Spring Spring 3A 0 10/03/2022 FD F INIT Metals Strontium Sr 239 1 Reg-Scr_95 74.4 3.2 1.00 μg/L 1.00 NQ NQ SW-846:6010D GELC SVC4scr 21 27 09/25/2000 210 250 232 27 White Rock Canyon Regional Spring Spring 3A 0 10/03/2022 REG F INIT Metals Strontium Sr 240 1 Reg-Scr_95 74.4 3.2 1.00 μg/L 1.00 NQ NQ SW-846:6010D GELC SVC4scr 21 27 09/25/2000 210 250 232 27 White Rock Canyon Regional Spring Spring 3A 0 10/03/2022 REG F INIT Metals Strontium Sr 240 1 Reg-Scr_95 74.4 3.2 1.00 μg/L 1.00 NQ NQ SW-846:6010D GELC SVC4scr 16 16 10/06/2003 149 167 158 16 White Rock Canyon Regional Spring Spring 0 10/03/2022 REG F INIT Metals Strontium Sr 153 1 Reg-Scr_95 74.4 2.1 1.00 μg/L 1.00 NQ NQ SW-846:6010D GELC SVC4scr 153 1 Reg-Scr_95 74.4 2.1 1.00 μg/L 1.00 NQ NQ SW-846:6010D GELC SVC4scr 154 NR Reg-Scr_95 74.4 2.1 1.00 μg/L 1.00 NQ NQ SW-846:6010D GELC SVC4scr 154 NR Reg-Scr_95 74.4 2.1 1.00 μg/L 1.00 NQ NQ SW-846:6010D GELC SVC4scr 154 NR Reg-Scr_95 74.4 2.1 1.00 μg/L 1.00 NQ NQ SW-846:6010D GELC SVC4scr 154 NR Reg-Scr_95 74.4 2.1 1.00 μg/L 1.00 NQ NQ SW-846:6010D GELC SVC4scr 154 NR Reg-Scr_95 74.4 2.1 1.00 μg/L 1.00 NQ NQ SW-846:6010D GELC SVC4scr 154 NR Reg-Scr_95 74.4 2.1 1.00 μg/L 1.00 NQ NQ SW-846:6010D GELC SVC4scr 154 NR Reg-Scr_95 74.4 2.1 1.00 μg/L 1.00 NQ NQ SW-846:6010D GELC SVC4scr 154 NR Reg-Scr_95 74.4 2.1 1.00 μg/L 1.00 NQ NQ SW-846:6010D GELC SVC4scr 154 NR Reg-Scr_95 74.4 2.1 1.00 μg/L 1.00 NQ NQ SW-846:6010D GELC SVC4scr 154 NR Reg-Scr_95 74.4 2.1 1.00 NQ NQ SW-846:6010D GELC SVC4scr 154 NR Reg-Scr_95 74.4 2.1 1.00 NQ NQ SW-846:6010D GELC SVC4scr 154 NR Reg-Scr_95 74.4 2.1 1.00 NQ NQ SW-846:6010D GELC SVC4scr 154 NR Reg-Scr_95 74.4 2.1 1.00 NQ NQ SW-846:6010D GELC SVC4scr 154 NR Reg-Scr_95 74.4 2.1 1.00 NQ NQ SW-846:6010D GELC SVC4scr 154 NR Reg-Scr_95 74.4 2.1	XC4scr	74				11.8			Regional Top		1125.0				, and the second	as Phosphorus		0.167		_					J+				
XC4scr 21 27 09/25/2000 210 250 232 27 White Rock Canyon and Rio Grande Regional Spring 3A 0 10/03/2022 FD F INIT Metals Strontium Sr 239 1 Reg-Scr_95 74.4 3.2 1.00 µg/L 1.00 NQ NQ SW-846:6010D GELC	XC4scr	89	98	03/06/2010	0.0691	0.271	0.1275	76 Mortandad Canyon	Regional Top	R-50 S1	1077.0	10/27/2022	REG F	INIT	Geninorg	Bromide	Br(-1)	0.149	1.2	Reg-Scr_95 0.0	67 2.2	0.0670	mg/L	1.00	J J	J_LAB	B EPA:300.0	GELC	
XC4scr 21 27 09/25/2000 210 250 232 27 White Rock Canyon and Rio Grande Regional Spring Spring 3A 0 10/03/2022 REG F INIT Metals Strontium Sr 153 1 Reg-Scr_95 74.4 2.1 1.00 INQ INQ SW-846:6010D GELC SW-84	XC4scr	19	21	10/06/2003	220	256	238		Regional Spring	Spring 3	0	10/03/2022	REG F	INIT	Metals	Strontium	Sr	224	0.9	Reg-Scr_95 74.	4 3	1.00	μg/L	1.00	NQ	NQ	SW-846:6010D	GELC	
Name	XC4scr	21	27	09/25/2000	210	250	232		Regional Spring	Spring 3A	0	10/03/2022	FD F	INIT	Metals	Strontium	Sr	239	1	Reg-Scr_95 74.	4 3.2	1.00	μg/L	1.00	NQ	NQ	SW-846:6010D	GELC	
	XC4scr	21	27	09/25/2000	210	250	232		Regional Spring	Spring 3A	0	10/03/2022	REG F	INIT	Metals	Strontium	Sr	240	1	Reg-Scr_95 74.	4 3.2	1.00	μg/L	1.00	NQ	NQ	SW-846:6010D	GELC	
	XC4scr	16	16	10/06/2003	149	167	158	16 White Rock Canyor and Rio Grande	Regional Spring	Spring 3AA	0	10/03/2022	REG F	INIT	Metals	Strontium	Sr	153	1	Reg-Scr_95 74.	4 2.1	1.00	μg/L	1.00	NQ	NQ	SW-846:6010D	GELC	

EM2022-0968 11 December 2022