

DEPARTMENT OF ENERGY

Environmental Management Los Alamos Field Office (EM-LA) Los Alamos, New Mexico 87544

RECEIVED

OCT 2 4 2019

MMED

Hazerdous Waste

Hazerdous Waste

OCT 2 4 2019

EMLA-2020-1054-02-001

Mr. John E. Kieling Bureau Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505-6303

Subject:

Monthly Notification of Groundwater Data Reviewed in October 2019

Dear Mr. Kieling:

This letter is the U.S. Department of Energy (DOE) Environmental Management Los Alamos Field Office (EM-LA) and Newport News Nuclear BWXT-Los Alamos, LLC (N3B) written submission in accordance with Section XXVI.D of the 2016 Compliance Order on Consent (Consent Order). Members of EM-LA and N3B met on October 10, 2019, to review groundwater data received in September 2019 in accordance with Section XXVI.C of the 2016 Consent Order. The enclosed report was prepared by comparing the data against groundwater notification criteria as defined in Section IX of the 2016 Consent Order. These criteria consider New Mexico Water Quality Control Commission (NMWQCC) groundwater standards, U.S. Environmental Protection Agency (EPA) maximum contaminant levels (MCLs), New Mexico Environment Department (NMED) screening levels for tap water, EPA regional screening levels for tap water, and NMED-approved background values for hydrogeological zones as set forth in the "Groundwater Background Investigation Report, Revision 5." For comparison with EPA tap water standards, the standard's carcinogenic risk value was adjusted to 1×10^{-5} , as specified in the Consent Order.

The enclosed report was prepared using the May 2019 EPA regional screening levels for tap water; the NMWQCC groundwater standards, published December 21, 2018; and the June 2019 Table A-1 of "Risk Assessment Guidance for Site Investigations and Remediation" for NMED tap water screening levels.

This report also includes analytical data from samples collected at locations within the Pueblo de San Ildefonso, which are subject to reporting at this time. These data have been reviewed by the Pueblo. This review is required under the Memorandum of Agreement dated May 28, 2014, between the DOE National Nuclear Security Administration Los Alamos Field Office and San Ildefonso Pueblo.

1-Day Notification

There were no instances of a contaminant detected at a concentration that exceeded the NMWQCC groundwater standard or federal MCL at locations where contaminants have not previously been detected above the respective standard as defined in the Consent Order (based on samples collected since June 14, 2007).

One-day notification was not required because there were no cases of a contaminant detected in a well screen interval or spring at a concentration that exceeded a water quality standard for the first time.

15-Day Notification

The required information for the contaminants and other chemical parameters that meet the five reporting criteria requiring written notification within 15 days is given in the accompanying report and tables.

If you have questions, please contact Steve Veenis at (505) 309-1362 (steve.veenis@em-la.doe.gov) or Hai Shen at (505) 257-7943 (hai.shen@em.doe.gov).

Sincerely,

Arturo Q. Duran

Compliance and Permitting Manager

Environmental Management Los Alamos Field Office

Enclosure:

1. Two hard copies with electronic files - Summary of Groundwater Data Reviewed in October 2019 That Meet Notification Requirements (EM2019-0411)

CC (letter with CD/DVD enclosure[s]):

Other

Harry Burgess, Los Alamos County, Los Alamos, NM (2 copies)

CC (letter and enclosure[s] emailed):

<u>Other</u>

Laurie King, EPA Region 6, Dallas, TX
Raymond Martinez, San Ildefonso Pueblo, NM
Dino Chavarria, Santa Clara Pueblo, NM
David Gomez, Los Alamos County, Los Alamos, NM
Michelle Hunter, NMED
Steve Pullen, NMED
Andrew C. Romero, NMED
Melanie Sandoval, NMED
Steve Yanicak, NMED
Jocelyn Buckley, LANL

Leslie Dale, LANL Brian Iacona, LANL William Mairson, LANL Jacob Meadows, LANL Enrique Torres, LANL

N₃B

William Alexander

Emily Day

Mei Ding

Mary Erwin

Erich Evered

Debby Holgerson

Lori Huntoon

Danny Katzman

Kim Lebak

Joseph Legare

Dana Lindsay

Frazer Lockhart

Elizabeth Lowes

Pamela Maestas

Jason Moore

Glenn Morgan

Lester Patten

Gary Pool

Bruce Robinson

Steve Veenis

Tashia Vigil

Jeff Yarbrough

N3Brecords@em-la.doe.gov

Public Reading Room (EPRR)

PRS Website

DOE NA-LA

Karen Armijo

Pete Maggiore

DOE EM-LA

Arturo Duran

Thomas McCrory

David Nickless

Cheryl Rodriguez

Hai Shen

emla.docs@em.doe.gov

SUMMARY OF GROUNDWATER DATA REVIEWED IN OCTOBER 2019 THAT MEET NOTIFICATION REQUIREMENTS

INTRODUCTION

This report provides information to the New Mexico Environment Department (NMED) concerning recent groundwater monitoring data obtained by Newport News Nuclear BWXT-Los Alamos, LLC (N3B) under the annual "Interim Facility-Wide Groundwater Monitoring Plan" for the 2019 monitoring year and contains results for contaminants and other chemical constituents that meet the five screening criteria described in Section XXVI of the 2016 Compliance Order on Consent modified February 2017 (2016 Consent Order). The report covers groundwater samples collected from wells or springs (listed in the accompanying tables) that provide surveillance of the hydrogeological zones at Los Alamos National Laboratory as indicated in the tables.

The report includes two tables. Table 1, NMED 09-19 Groundwater Report, presents results since June 14, 2007, that met the five reporting criteria as specified in the 2016 Consent Order. Table 2, NMED 09-19 Groundwater Report Addendum, presents results that exceed the 95th percentile of those results in the data set defined in the "Groundwater Background Investigation Report, Revision 5." Only the contaminants and other chemical constituents that lack a calculated groundwater background value (i.e., the frequency of detections was too low to calculate a background value at the 95% upper tolerance level) are listed in this table. Table 2 is a voluntary submission by N3B to NMED to identify the potential risk resulting from contaminants and other chemical constituents that are without defined background values.

These tables include the following:

- Comments on results that appear to be exceptional based on consideration of monitoring data acquired from previous analyses (using statistics described below)
- Supplemental information summarizing monitoring results obtained from previous analyses
- Sampling date, name of the well or spring, location of the well or spring, depth of the screened
 interval, groundwater zone sampled, analytical result, detection limit, values for regulatory
 standards or screening levels, and analytical and secondary validation qualifiers. Additional
 information describing the locations and analytical data is also included. All data have been
 through secondary validation.

This report was prepared by comparing the data against groundwater notification criteria as defined in Section IX of the 2016 Consent Order. These criteria consider New Mexico Water Quality Control Commission (NMWQCC) groundwater standards, U.S. Environmental Protection Agency (EPA) maximum contaminant levels (MCLs), NMED screening levels for tap water, EPA regional screening levels for tap water, and NMED-approved background values for hydrogeological zones as set forth in the "Groundwater Background Investigation Report, Revision 5." For comparison with EPA tap water standards, the standard's carcinogenic risk value was adjusted to 1 x 10⁻⁵, as specified in the 2016 Consent Order. This report was prepared using the May 2019 EPA regional screening levels for tap water, the NMWQCC groundwater standards published December 21, 2018, and the NMED tap water screening levels specified in the June 2019 Table A-1 of "Risk Assessment Guidance for Site Investigations and Remediation."

Background values applied in Table 1 notification criteria C2 and C4 are the background values for hydrogeological zones as set forth in the NMED-approved "Groundwater Background Investigation Report, Revision 5."

Screening values applied in Table 2 criteria XC2scr and XC4scr are the 95th percentile of the data set used to establish background as defined in the "Groundwater Background Investigation Report, Revision 5."

DESCRIPTION OF TABLES

15-Day Notification Requirement

Table 1 is divided into separate categories that correspond to the five screening criteria in Section XXVI of the 2016 Consent Order. In several cases, data met more than one of the notification criteria and therefore appear in the table multiple times.

The criteria codes (the "C" stands for criterion) and their definitions are as follows:

- C1. Detection of a contaminant that is an organic compound in a spring or screened interval of a well if that contaminant has not previously been detected in the spring or screened interval.
- C2. Detection of a contaminant that is a metal or other inorganic compound at a concentration above the background level in a spring or screened interval of a well if that contaminant has not previously exceeded the background level in the spring or screened interval.
- C3. Detection of a contaminant in a spring or screened interval of a well at a concentration that (1) exceeds the lower of either one-half the NMWQCC water quality standard or one-half the federal MCL, or, if there is no such standard for the contaminant, (2) exceeds one-half the tap water screening levels in Table A-1 of NMED's "Risk Assessment Guidance for Site Investigations and Remediation" (February 2019), or, if there is no NMED tap water screening level available for a contaminant, (3) exceeds one-half the EPA regional human health medium-specific screening level for tap water, if that contaminant has not previously exceeded one-half such standard or screening level in the spring or screened interval.
- C4. Detection of a contaminant that is a metal or other inorganic compound in a spring or screened interval of a well at a concentration that exceeds 2 times the background level for the third consecutive sampling of the spring or screened interval.
- C5. Detection of a contaminant in a spring or screened interval of a well at a concentration that exceeds either one-half the NMWQCC water quality standard or one-half the federal MCL, and which has increased for the third consecutive sampling of that spring or screened interval.

Table 2 is divided into two categories that correspond to two screening criteria. They mirror criteria C2 and C4 in Table 1, respectively.

The two criteria are as follows:

XC2scr Detection of a contaminant that is a metal or other inorganic compound at a concentration above the 95th percentile in a spring or screened interval of a well if that contaminant has not previously exceeded the 95th percentile of the data set used to establish background in the spring or screened interval as defined in the "Groundwater Background Investigation Report, Revision 5."

XC4scr Detection of a contaminant that is a metal or other inorganic compound in a spring or screened interval of a well at a concentration that for the third consecutive sampling exceeds 2 times the 95th percentile of the data set used to establish background as defined in the "Groundwater Background Investigation Report, Revision 5."

Columns 2 through 8 in both tables provide summary statistics for metals or organic/inorganic compounds by field preparation code (e.g., filtered aluminum) for samples collected since January 1, 2000, including the currently reported data. The statistics include the date of the first sampling event; the number of sampling events and samples analyzed; the number of detections; and the minimum, maximum, and median concentration for detections. This information indicates whether the new result is consistent with the range of earlier data.

The subsequent columns contain location and sampling information as follows:

Canyon—canyon where monitoring location is found

Zone—hydrogeological zone from which the groundwater sample was collected (e.g., alluvial spring)

Location—monitoring location name

Screen Depth—depth of top of well screen in feet (0 for springs, -1 if unknown)

Start Date—date the sample was collected

Fld QC Type Code—identifies regular samples (REG) or field duplicates (FD)

Fld Prep Code—identifies whether samples are filtered (F) or unfiltered (UF)

Lab Sample Type Code—indicates whether result is a primary sample (INIT) or reanalysis (RE)

Anyl Suite Code—analytical suite (such as volatile organic compounds) for analyzed compound

Analyte Desc-name of analyte

Analyte—chemical symbol for analyte or CAS (Chemical Abstracts Service) number for organic compounds

Std Result—analytical result in standard measurement units

Result/Median—ratio of the Std Result to the median of all detections since 2000

LVL Type/Risk Code—type of regulatory standard, screening level, or background value (indicating groundwater zone) used for comparison

Screen Level—value of the LVL Type/Risk Code

Exceedance Ratio—ratio of Std Result to LVL Type/Risk Code. In earlier versions of this report, the ratio was divided by the basis for comparison in the criterion, but that is no longer the case. For example, for a criterion (such as C3) that compares the value with one-half the standard, a value equal to a standard previously had an exceedance ratio of 2. The current report shows this ratio as 1.

Std MDL—method detection limit in standard measurement units

Std UOM—standard units of measurement

Dilution Factor—amount by which the sample was diluted to measure the concentration

Lab Qualifier—analytical laboratory qualifiers indicating analytical quality of the sample data

Validation Qualifier—the qualifier that indicates the effects of all processes associated with the sample (i.e., sample collection, additional quality control samples such as field duplicates, etc.) on the quality of the sample data

Validation Reason Code—an explanation of the reason for validation of the qualifiers

Anyl Meth Code—analytical method number

Lab Code—analytical laboratory name

Comment—N3B comment regarding the analytical result

The tables may include the following acronyms, abbreviations, and analytical laboratory codes and qualifiers.

Acronyms and Abbreviations

DNX—hexahydro-1,3-dinitro-5-nitro-1,3,5-triazine

EPA MCL—U.S. Environmental Protection Agency maximum contaminant level

GENINORG—General Inorganic

HMX—octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

HEXP—high explosive

LANL Int BG LV—Los Alamos National Laboratory intermediate background level

LANL Reg BG LV—Los Alamos National Laboratory regional background level

LCMS/MS—liquid chromatography mass spectrometry/mass spectrometry

MDL—method detection limit

MNX—hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine

NM GW STD—New Mexico Water Quality Control Commission groundwater standard

NMED A1 TAP SCRN LVL—New Mexico Environment Department screening level for tap water

NTU—nephelometric turbidity unit

PQL—practical quantitation limit

RDX—Royal Demolition Explosive (hexahydro-1,3,5-trinitro-1,3,5-triazine)

SVOC—semivolatile organic compound

TDS—total dissolved solids

TNX—2,4,6-trinitroxylene

UOM—units of measurement

VOC—Volatile organic compound

Analytical Laboratory Codes and Qualifiers

* (lab qualifier) - (inorganic)—Duplicate analysis (relative percent difference) is not within control limits.

BJ (lab qualifier)—Analyte is present in the blank, and the associated numerical value is an estimated quantity.

F-filtered

FD—field duplicate

GELC—General Engineering Laboratories, Inc., Charleston, SC

GENINORG—general inorganic

H (lab qualifier)—The required extraction or analysis holding time for this result was exceeded.

HJ (lab qualifier)—The required extraction or analysis holding time for this result was exceeded. The associated numerical value is an estimated quantity.

I4a (validation reason code)—The affected analyte is considered estimated and biased high because this analyte was identified in the method blank but was greater than 5 times the concentration of the affected analyte in the sample.

19b (validation reason code)—The affected analytes are regarded as rejected because the analytical holding time was exceeded.

INIT—primary sample

J (lab qualifier)—The associated numerical value is an estimated quantity.

J (validation qualifier)—The analyte is classified as detected, but the reported concentration value is expected to be more uncertain than usual.

J- (validation qualifier)—The analyte is classified as detected, but the reported concentration value is expected to be more uncertain than usual with a potential negative bias.

J+ (validation qualifier)—The analyte is classified as detected, but the reported concentration value is expected to be more uncertain than usual with a potential positive bias.

J_LAB (validation reason code)—The analytical laboratory qualified the detected result as estimated (J) because the result was less than the PQL but greater than the MDL.

N (lab qualifier)—Spiked sample recovery is not within control limits.

NQ (validation qualifier)—No validation qualifier flag is associated with this result, and the analyte is classified as detected.

NQ (validation reason code)—The analytical laboratory did not qualify the analyte as not detected and/or with any other standard qualifier. The analyte is detected in the sample.

RE—reanalysis

REG—regular sample

UF-unfiltered

V9b (validation reason code)—The preserved sample was analyzed outside the 14-day holding time or the unpreserved sample was analyzed outside the 7-day holding time.

Table 1: NMED 9-19 Groundwater Report

Table	# 1. IN	IVIED	9-19 Grou	iiuwatei	Kepon	L																										
Criteria Code	Visits	Samples	First Event	Min Detect	Max Detect	Median Detect	Num Detect	Canyon	Zone	Location	Screen Depth	Start Date	Fld QC Type Code	Prep Code	Lab Sample Type Code	Anyl Suite Code	Analyte Desc	Analyte	Std Result	Result/Median	LVL Type/Risk Code	Screen Level	Exceedance Ratio	Std MDL	Std UOM	Dilution Factor	Lab Qualifier	ion Qualifie	Validation Reason Code	Anyl Meth Code	Lab Code	Comment
C1	13	17	1/25/2012	3.58	3.58	3.58	1	Water Canyon	Alluvial	CDV-16-611923	3.2	8/9/2019 F	REG L	JF IN	NIT	VOC	Acetone	67-64-1	3.58	1	NMED A1 TAP SCRN LVL	14100	0	1.5	µg/L	1	J	J_L	AB SW	/-846:8260B	GELC	
C1	20	21	4/20/2010	8.65	8.65	8.65	1	Water Canyon	Intermediate Perched	16-26644	129	8/7/2019 F	REG L	JF IN	VIT	VOC	Acetone	67-64-1	8.65	1	NMED A1 TAP SCRN LVL	14100	0	1.5	μg/L	1 .	J	J_L	AB SW	/-846:8260B	GELC	
C1	1	1	8/22/2019	1.92	1.92	1.92	1	Water Canyon	Intermediate Perched	R-63i	1122.5	8/22/2019 F	REG L	JF IN	VIT	VOC	Acetone	67-64-1	1.92	1	NMED A1 TAP SCRN LVL	14100	0	1.5	µg/L	1 .	J	J_l	AB SW	/-846:8260B	GELC	
C1	1	1	8/22/2019	1.42	1.42	1.42	1	Water Canyon	Intermediate Perched	e R-63i	1123	8/22/2019 F	REG L	JF IN	TIV	VOC	Methylene Chloride	75-09-2	1.42	1	NM GW STD	5	0.3	1	µg/L	1 E	BJ J	J_L	AB SW	/-846:8260B	GELC	
C1	1	1	8/22/2019	0.31	0.31	0.31	1	Water Canyon	Intermediate Perched	R-63i	1123	8/22/2019 F	REG L	JF IN	TIV	HEXP	RDX	121-82-4	0.31	1	NMED A1 TAP SCRN LVL	9.66	0	0.091	µg/L :	2	N	Q NG	. SW	/-846:8330B	GELC	
C1	4	5	2/13/2019	3.32	3.32	3.32	1	Water Canyon	Regional	R-69 S2	1376	8/21/2019 F	REG L	JF IN	TIV	VOC	Acetone	67-64-1	3.32	1	NMED A1 TAP SCRN LVL	14100	0	1.5	µg/L	1 .	J	J_L	AB SW	/-846:8260B	GELC	
C1	4	5	2/13/2019	1.41	1.41	1.41	1	Water Canyon	Regional	R-69 S2	1376	8/21/2019 F	REG L	JF IN	VIT	VOC	Methylene Chloride	75-09-2	1.41	1	NM GW STD	5	0.3	1	μg/L	1 .	J J	J_L	AB SW	/-846:8260B	GELC	
C1	4	5	1/31/2019	1.32	1.32	1.32	1	Water Canyon	Regional Top	R-69 S1	1310	8/21/2019 F	REG L	JF IN	TIV	VOC	Methylene Chloride	75-09-2	1.32	1	NM GW STD	5	0.3	1	μg/L	1 .	J	J_L	AB SW	/-846:8260B	GELC	
C2	27	33	6/1/2005	0.04	0.263	0.103	27	Water Canyon	Intermediate Perched	e CdV-16-1(i)	624	8/9/2019 F	REG F	. IV	VIT	GENINORG	Fluoride	F(-1)	0.26	2.6	LANL Int BG LVL	0.234	1.1	0.033	mg/L	1	N	Q NG	EP/	A:300.0	GELC	
C2	25	31	8/31/2010	0.05	0.282	0.0911	31	Water Canyon	Intermediate Perched	CDV-16-4ip S1	816	8/12/2019 F	REG F	. IV	TIV	GENINORG	Fluoride	F(-1)	0.28	3.1	LANL Int BG LVL	0.234	1.2	0.033	mg/L	1	N	Q NC	EP#	A:300.0	GELC	
C2	17	19	2/8/2010	0.08	0.312	0.144	19	Water Canyon	Intermediate Perched	CDV-37-1(i)	632	8/16/2019 F	REG F	. IV	TIV	GENINORG	Fluoride	F(-1)	0.31	2.2	LANL Int BG LVL	0.234	1.3	0.033	mg/L	1	N	Q NG	EPA	A:300.0	GELC	
C2	12	17	5/21/2015	0.08	0.239	0.11	17	Water Canyon	Intermediate Perched	CDV-9-1(i) S1	937	8/6/2019 F	REG F	. IV	TIV	GENINORG	Fluoride	F(-1)	0.24	2.2	LANL Int BG LVL	0.234	1	0.033	mg/L	1	N	Q NC	EP#	A:300.0	GELC	
C2	1	1	8/22/2019	89.00	89	89	1	Water Canyon	Intermediate Perched	e R-63i	1123	8/22/2019 F	REG F	· IN	TIV	GENINORG	Alkalinity-CO3+HCO3	ALK-CO3+HCO3	89.00	1	LANL Int BG LVL	62	1.4	1.45	mg/L	1 H	1 N	Q NG	EPA	A:310.1	GELC	
C2	1	1	8/22/2019	12.90	12.9	12.9	1	Water Canyon	Intermediate Perched	R-63i	1123	8/22/2019 F	REG F	· IN	TIV	GENINORG	Calcium	Са	12.90	1	LANL Int BG LVL	10.7	1.2	0.05	mg/L	1	N	Q NG	sw	/-846:6010C	GELC	
C2	1	1	8/22/2019	0.27	0.27	0.27	1	Water Canyon	Intermediate Perched	R-63i	1123	8/22/2019 F	REG F	IN	VIT	GENINORG	Fluoride	F(-1)	0.27	1	LANL Int BG LVL	0.234	1.2	0.033	mg/L	1	N	Q NG	EPA	A:300.0	GELC	

EM2019-0411 7 October 2019

Table 1: NMED 9-19 Groundwater Report

	•	*****	9-19 Grou	iiawatci	itcpoi	•																									
Criteria Code	Visits	Samples	First Event	Min Detect	Max Detect	Median Detect	Num Detect	Canyon	Zone	Location	Screen Depth	Start Date	Fld QC Type Code	Fld Prep Code	Lab Sample Type Code	Anyl Suite Code	Analyte Desc	Analyte	Std Result	Result/Median	LVL Type/Risk Code	Screen Level	Exceedance Ratio	Std MDL	Std UOM	Dilution Factor	Lab Qualifier	Validation Reason Code	Anyl Meth Code	Lab Code	Comment
C2	1	1	8/22/2019	46.70	46.7	46.7	1	Water Canyon	Intermediate Perched	R-63i	1123	8/22/2019	REG	F	INIT	GENINORG	Hardness	HARDNESS	46.70	1	LANL Int BG LVL	37.8	1.2 0.	453 r	mg/L	1	NC	NQ	SM:A2340B	GELC	
C2	1	1	8/22/2019	3.53	3.53	3.53	1	Water Canyon	Intermediate Perched	R-63i	1123	8/22/2019	REG	F	INIT	GENINORG	Magnesium	Mg	3.53	1	LANL Int BG LVL	3.14	1.1 0.	11 r	mg/L	1	NC	NQ	SW-846:6010C	GELC	
C2	1	1	8/22/2019	0.56	0.561	0.561	1	Water Canyon	Intermediate Perched	R-63i	1123	8/22/2019	REG	F	INIT		Nitrate-Nitrite as Nitrogen	NO3+NO2-N	0.56	1	LANL Int BG LVL	0.459	1.2 0.	017 r	mg/L	1	NC	NQ	EPA:353.2	GELC	
C2	1	1	8/22/2019	22	22	22	1	Water Canyon	Intermediate Perched	R-63i	1122.5	8/22/2019	REG	F	INIT	GENINORG	Sodium	Na	22	1	LANL Int BG LVL	18.2	1.2 0.	1 r	mg/L	1	NC	NQ	SW-846:6010C	GELC	
C2	1	1	8/22/2019	66.3	66.3	66.3	1	Water Canyon	Intermediate Perched	R-63i	1122.5	8/22/2019	REG	F	INIT	METALS	Strontium	Sr	66.3	1	LANL Int BG LVL	59.6	1.1 1	ŀ	µg/L	1	NC	NQ	SW-846:6010C	GELC	
C2	47	54	1/3/2001	0.0384	0.494	0.13	48	Water Canyon	Regional	CdV-R-15-3 S4	1235.1	8/7/2019	REG	F	INIT	GENINORG	Fluoride	F(-1)	0.494	3.8	LANL Reg BG LVL	0.377	1.3 0.	033 r	mg/L	1	NC	NQ	EPA:300.0	GELC	
C2	4	5	2/13/2019	6.9	6.9	6.9	1	Water Canyon	Regional	R-69 S2	1375.5	8/21/2019	REG	F	INIT	METALS	Nickel	Ni	6.9	1	LANL Reg BG LVL	2.9	2.4 0.	6 J	µg/L	1	NC	NQ	SW-846:6020	GELC	
C3	13	14	6/27/2000	4.98	8.5	6.1	9	Lower Los Alamos Canyon	Alluvial	LLAO-1b	11.32	6/11/2019	REG	F	INIT	METALS	Arsenic	As	7.31	1.2	NM GW STD	10	0.7 2	ŀ	µg/L	1	NC	NQ	SW-846:6020	GELC	
C3	17	19	8/8/2011	1.81	6.24	3.52	13	Lower Los Alamos Canyon	Intermediate Spring	Vine Tree Spring	0	6/11/2019	REG	F	INIT	METALS	Arsenic	As	6.24	1.8	NM GW STD	10	0.6 2	ŀ	µg/L	1	NC	NQ	SW-846:6020	GELC	
С3	39	51	8/15/2006	0.13	5	1.84	50	Pajarito Canyon	Regional Top	R-18	1358	8/21/2019	FD	UF	INIT	HEXP	RDX	121-82-4	5.00	2.7	NMED A1 TAP SCRN LVL	9.66	0.5 0.	084 μ	µg/L :	2	NC	NQ NQ	SW-846:8330B	GELC	Increasing trend
C4	21	26	4/20/2010	15.20	57.8	20.1	26	Water Canyon	Intermediate Perched	16-26644	129	8/7/2019	REG	F	INIT	GENINORG	Chloride	CI(-1)	20.70	1	LANL Int BG LVL	3.11	6.7 0.	335 r	mg/L	5	NC	NQ	EPA:300.0	GELC	
C4	27	33	6/1/2005	5.78	8.76	6.82	33	Water Canyon	Intermediate Perched	CdV-16-1(i)	624	8/9/2019	REG	F	INIT	GENINORG	Chloride	CI(-1)	8.76		LANL Int BG LVL	3.11	2.8 0.	067 r	mg/L	1	NC	NQ	EPA:300.0	GELC	
C4	12	17	5/21/2015	9.11	66.5	12.7	17	Water Canyon	Intermediate Perched	CDV-9-1(i) S1	937	8/6/2019	FD	F	INIT	GENINORG	Chloride	CI(-1)	16.40		LANL Int BG LVL	3.11	5.3 0.	134 r	mg/L	2	NC	NQ	EPA:300.0	GELC	
C4	12	17	5/21/2015	9.11	66.5	12.7	17	Water Canyon	Intermediate Perched	CDV-9-1(i) S1	937	8/6/2019	REG	F	INIT	GENINORG	Chloride	CI(-1)	16.40		LANL Int BG LVL	3.11	5.3 0.	134 r	mg/L	2	NC	NQ	EPA:300.0	GELC	
C4	12	17	5/21/2015	0.91	2.63	1.06	17	Water Canyon	Intermediate Perched	CDV-9-1(i) S1	937	8/6/2019	FD	F	INIT		Nitrate-Nitrite as Nitrogen	NO3+NO2-N	0.91		LANL Int BG LVL	0.459	2 0.	085 r	mg/L	5	NC	NQ	EPA:353.2	GELC	
C4	12	17	5/21/2015	0.91	2.63	1.06	17	Water Canyon	Intermediate Perched	CDV-9-1(i) S1	937	8/6/2019	REG	F	INIT		Nitrate-Nitrite as Nitrogen	NO3+NO2-N	0.95		LANL Int BG LVL	0.459	2.1 0.	085 r	mg/L	5		NQ	EPA:353.2	GELC	
C4	32	37	9/9/2004	53.10	90	69.1	37	Pajarito Canyon	Intermediate Spring	Bulldog Spring	0	8/14/2019	REG	F	INIT	METALS	Barium	Ва	53.10		LANL Int BG LVL	13.5	3.9 1	ŀ	µg/L	1	NC	NQ	SW-846:6010C	GELC	
C4	31	36	9/9/2004	12.10	45.9	19.1	36	Pajarito Canyon	Intermediate Spring	Bulldog Spring	0	8/14/2019	REG	F	INIT	GENINORG	Chloride	CI(-1)	16.90		LANL Int BG LVL	3.11	5.4 0.	335 r	mg/L	5	NC	NQ	EPA:300.0	GELC	

Table 1: NMED 9-19 Groundwater Report

Tab	le 1: N	MED	9-19 Grou	ndwater	Repor	t																							
Criteria Code	Visits	Samples	First Event	Min Detect	Max Detect	Median Detect	Num Detect	Canyon	Zone	Screen Depth		Fld QC Type Code	Lab Sample Type Code	Anyl Suite Code	Analyte Desc	Analyte	Std Result	Result/Median	LVL Type/Risk Code	Screen Level	Exceedance Ratio	Std MDL	NOU bts	Dilution Factor	Lab Qualifier Validation Qualifier	Validation Reason Code	Anyl Meth Code	Lab Code	Comment
C4	75	90	1/10/2000	145.00	1030	189.5	84	Water Canyon	Intermediate Spring Ground Spring	0	8/17/2019 RE	EG F	INIT	METALS	Barium	Ва	250.00	1.3	LANL Int BG LVL	13.5	18.5	1	μg/L	1	NQ	NQ	SW-846:6010C	GELC	
C4	27	32	1/29/2007	13.60	42	19.4	32		Intermediate Spring Burning Ground Spring	0	8/17/2019 RE	G F	INIT	GENINORG	Chloride	CI(-1)	13.60	0.7	LANL Int BG LVL	3.11	4.4 (0.134	mg/L	2	NQ	NQ	EPA:300.0	GELC	
C4	71	80	1/10/2000	115	243	166	73		Intermediate Martin Spring Spring	0	8/10/2019 RE	G F	INIT	METALS	Barium	Ва	129	8.0	LANL Int BG LVL	13.5	9.6	1	μg/L	1	NQ	NQ	SW-846:6010C	GELC	
C4	27	34	1/30/2007	18	44.2	22.4	34	Water Canyon	Intermediate Martin Spring Spring	0	8/10/2019 RE	G F	INIT	GENINORG	Chloride	CI(-1)	22.6	1	LANL Int BG LVL	3.11	7.3	0.335	mg/L	5	NQ	NQ	EPA:300.0	GELC	
C4	27	34	1/30/2007	0.35	0.688	0.4765	34		Intermediate Martin Spring Spring	0	8/10/2019 RE	G F	INIT	GENINORG	Fluoride	F(-1)	0.55	1.1	LANL Int BG LVL	0.234	2.3	0.033	mg/L	1	NQ	NQ	EPA:300.0	GELC	
C4	27	34	1/30/2007	0.95	4.88	2.66	34		Intermediate Martin Spring Spring	0	8/10/2019 RE	G F	INIT	GENINORG	Nitrate-Nitrite as Nitrogen	NO3+NO2-N	2.46	0.9	LANL Int BG LVL	0.459	5.4 (0.085	mg/L	5	NQ	NQ	EPA:353.2	GELC	
C4	17	19	8/8/2011	39.80	54.1	43.8	19	Lower Los Alamos Canyon	Intermediate Spring Spring	0	6/11/2019 RE	EG F	INIT	METALS	Barium	Ва	45.10	1	LANL Int BG LVL	13.5	3.3	1	μg/L	1	NQ	NQ	SW-846:6010C	GELC	
C4	17	19	8/8/2011	24	31	28.6	19	Lower Los Alamos Canyon	Intermediate Spring Spring	0	6/11/2019 RE	G F	INIT	GENINORG	Calcium	Са	24	0.8	LANL Int BG LVL	10.7	2.2	0.05	mg/L	1	NQ	NQ.	SW-846:6010C	GELC	
C4	17	19	8/8/2011	15.5	32.4	16.7	19	Lower Los Alamos Canyon	Intermediate Spring Vine Tree Spring	0	6/11/2019 RE	EG F	INIT	GENINORG	Chloride	CI(-1)	32.4	1.9	LANL Int BG LVL	3.11	10.4	0.335	mg/L	5	NQ	NQ	EPA:300.0	GELC	
C4	17	19	8/8/2011	0.42	0.693	0.485	19	Lower Los Alamos Canyon	Intermediate Vine Tree Spring Spring	0	6/11/2019 RE	EG F	INIT	GENINORG	Fluoride	F(-1)	0.56	1.2	LANL Int BG LVL	0.234	2.4 (0.033	mg/L	1	NQ	NQ	EPA:300.0	GELC	
C4	17	19	8/8/2011	87.60	113	104	19	Lower Los Alamos Canyon	Intermediate Vine Tree Spring Spring	0	6/11/2019 RE	EG F	INIT	GENINORG	Hardness	HARDNESS	87.60	0.8	LANL Int BG LVL	37.8	2.3	0.453	mg/L	1	NQ	NQ	SM:A2340B	GELC	
C4	17	19	8/8/2011	6.73	8.59	7.91	19	Lower Los Alamos Canyon	Intermediate Vine Tree Spring Spring	0	6/11/2019 RE	EG F	INIT	GENINORG	Magnesium	Mg	6.73	0.9	LANL Int BG LVL	3.14	2.1 (0.11	mg/L	1	NQ	NQ	SW-846:6010C	GELC	
C4	16	18	8/8/2011	2.67	4.35	3.56	18	Lower Los Alamos Canyon	Intermediate Vine Tree Spring Spring	0	6/11/2019 RE	G F	INIT	GENINORG	Nitrate-Nitrite as Nitrogen	NO3+NO2-N	2.67	0.8	LANL Int BG LVL	0.459	5.8	0.085	mg/L	5	NQ	NQ.	EPA:353.2	GELC	
C4	17	19	8/8/2011	3.41	6.68	5.69	19	Lower Los Alamos Canyon	Intermediate Vine Tree Spring Spring	0	6/11/2019 RE	G F	INIT	GENINORG	Perchlorate	CIO4	3.41	0.6	LANL Int BG LVL	0.27	12.6	0.1	μg/L	2	NQ	NQ.	SW-846:6850	GELC	
C4	17	19	8/8/2011	122.00	151	139	19	Lower Los Alamos Canyon	Intermediate Vine Tree Spring Spring	0	6/11/2019 RE	G F	INIT	METALS	Strontium	Sr	122.00	0.9	LANL Int BG LVL	59.6	2 1	1	μg/L	1	NQ	NQ.	SW-846:6010C	GELC	
C4	17	19	8/8/2011	18.70	21.8	21.1	19	Lower Los Alamos Canyon	Intermediate Vine Tree Spring Spring	0	6/11/2019 RE	EG F	INIT	GENINORG	Sulfate	SO4(-2)	18.70	0.9	LANL Int BG LVL	7.1	2.6	0.133	mg/L	1	NQ	NQ	EPA:300.0	GELC	

EM2019-0411 9 October 2019

Table 1: NMED 9-19 Groundwater Report

			3-13 G10u			_																									
Criteria Code	Visits	Samples	First Event	Min Detect	Max Detect	Median Detect	Num Detect	Canyon	Zone	Location	Screen Depth	Start Date	FId QC Type Code	Fld Prep Code	Lab Sample Type Code	Anyl Suite Code	Analyte Desc	Analyte	Std Result	Result/Median	LVL Type/Risk Code	Screen Level	Exceedance Ratio	Std UOM	Dilution Factor	Lab Qualifier	Validation Qualifier	Validation Reason Code	Anyl Meth Code	Lab Code	Comment
C4	64	75	5/17/2005	2.27	7.43	5.35	75	Sandia Canyo	n Regional Top	R-11	855	8/14/2019	REG	F	INIT		Nitrate-Nitrite as Nitrogen	NO3+NO2-N	5.70	1.1	LANL Reg BG LVL	0.769	7.4 0.08	5 mg/			NQ	NQ	EPA:353.2	GELC	
C4	64	75	5/17/2005	5.95	20.2	10.2	75	Sandia Canyor	n Regional Top	R-11	855	8/14/2019	REG	F	INIT	GENINORG	Sulfate	SO4(-2)	10.60		LANL Reg BG LVL	4.59	2.3 0.13	3 mg/	L 1		NQ	NQ	EPA:300.0	GELC	
C4	53	59	3/6/2010	4.68	18.3	8.71	59	Mortandad Canyon	Regional Top	R-50 S1	1077	8/22/2019	REG	F	INIT	GENINORG	Chloride	CI(-1)	15.8		LANL Reg BG LVL	2.7	5.8 0.33	5 mg/	L 5	Н	J-	l9b	EPA:300.0	GELC	
C4	54	62	3/6/2010	44.90	150	97.3	62	Mortandad Canyon	Regional Top	R-50 S1	1077	8/22/2019	REG	F	INIT	METALS	Chromium	Cr	57.40	0.6	LANL Reg BG LVL	7.48	7.7 3	μg/l	_ 1		NQ	NQ	SW-846:6020	GELC	
C4	54	61	3/6/2010	0.40	2.77	1.9	61	Mortandad Canyon	Regional Top	R-50 S1	1077	8/22/2019	REG	F	INIT		Nitrate-Nitrite as Nitrogen	NO3+NO2-N	2.38		LANL Reg BG LVL	0.769	3.1 0.08	5 mg/	L 5		NQ	NQ	EPA:353.2	GELC	
C4	53	59	3/6/2010	7.22	19.6	13.2	59	Mortandad Canyon	Regional Top	R-50 S1	1077	8/22/2019	REG	F	INIT	GENINORG	Sulfate	SO4(-2)	18.5		LANL Reg BG LVL	4.59	4 0.13	3 mg/	L 1	Н	J-	l9b	EPA:300.0	GELC	
C5	23	33	4/2/2010	0.29	15	2.4	29	Water Canyon	Alluvial	CDV-16-611923	3	8/9/2019	REG	UF	INIT	HEXP	RDX	121-82-4	6.79	2.8	NMED A1 TAP SCRN LVL	9.66	0.7 0.088	3 µg/l	_ 2		NQ	NQ	SW-846:8330B	GELC	
C5	8	9	12/5/2016	6.89	13.1	11.5	9	Water Canyon	Alluvial Spring	16-61439	0	8/7/2019	REG	UF	DL	HEXP	RDX	121-82-4	13.00	1.1	NMED A1 TAP SCRN LVL	9.66	1.3 0.46	7 µg/l	_ 10		NQ	NQ	SW-846:8330B	GELC	
C5	17	19	8/8/2011	1.81	6.24	3.52	13	Lower Los Alamos Canyon	Intermediate Spring	Vine Tree Spring	0	6/11/2019	REG	F	INIT	METALS	Arsenic	As	6.24	1.8	NM GW STD	10	0.6 2	μg/l	_ 1		NQ	NQ	SW-846:6020	GELC	

Table 2: NMED 9-19 Groundwater Report Addendum

									•			•																					
Criteria Code	Vicite	VISITS	First Event		Min Detect	Max Detect	Median Detect	Num Detect	Canyon	Zone	Location	Screen Depth	Start Date	Fld QC Type Code	Fld Prep Code	Lab Sample Type Code	Anyl Suite Code	Analyte Desc	Analyte	Std Result	Result/Median	LVL Type/Risk Code	Screen Level	Exceedance Ratio	Std MDL	Std UOM	Dilution Factor	Lab Oualifier	Validation Qualifier	Validation Reason Code	Anyl Meth Code	Lab Code	Comment
XC2sc	r 1	1	8/22/20	19 3.0	03 3	3.03	3.03	1	Water Canyon	Intermediate Perched	R-63i	1122.5	8/22/2019	REG	F	INIT	METALS	Arsenic	As	3.03	1	Int-Scr_95	2.82	1.1	2	μg/L	1	J J	J_l	LAB S	SW-846:6020	GELC	
XC2sc	r 16	19	11/25/2	014 0	C)	0.0	7	Water Canyon	Regional Top	R-47	1322.000	8/20/2019	REG	F	INIT		Total Phosphate as Phosphorus	PO4-P	0	3.2	Reg-Scr_95	0.1	1.1	0.02	mg/L	1.00	N	Q NG	Q E	EPA:365.4	GELC	
XC2sc	r 29	32	10/23/2	015 3.7	7 1	17.7	7.59	4	Mortandad Canyon	Regional Top	SIMR-2	885.000	6/12/2019	REG	F	INIT	METALS	Tin	Sn	17.7	2.3	Reg-Scr_95	13.00	1.4	2.50	μg/L	1.0	J	+ I4a	a 5	SW-846:6010C	GELC	
XC4sc	r 30	36	6/1/200	5 33	7	79	61	36	Water Canyon	Intermediate Perched	CdV-16-1(i)	624.000	8/9/2019	REG	F	INIT	METALS	Boron	В	72.600	1.2	Int-Scr_95	16.2000	4.5	15.00	μg/L	1.00	١	Q NC	2 5	SW-846:6010C	GELC	
XC4sc	r 30	36	6/1/200	5 3.4	4 2	24.8	9.9	34	Water Canyon	Intermediate Perched	CdV-16-1(i)	624	8/9/2019	REG	F	INIT	METALS	Copper	Cu	10.6	1.1	Int-Scr_95	3	3.5	3	μg/L	1	J J	J_l	LAB S	SW-846:6010C	GELC	
XC4sc	r 25	31	8/31/20	10 22	.9 1	115	63.5	31	Water Canyon	Intermediate Perched	CDV-16-4ip S1	815.6	8/12/2019	REG	F	INIT	METALS	Boron	В	57.9	0.9	Int-Scr_95	16.2	3.6	15	μg/L	1	١	Q NC	2 5	SW-846:6010C	GELC	
XC4sc	r 71	80	1/10/20	00 51	5	5130	333	52	Water Canyon	Intermediate Spring	Martin Spring	0	8/10/2019	REG	F	INIT	METALS	Aluminum	Al	396	1.2	Int-Scr_95	68	5.8	68	μg/L	1	١	Q NC	2 8	SW-846:6010C	GELC	
XC4sc	r 67	76	1/10/20	00 50	8 2	2840	1300	76	Water Canyon	Intermediate Spring	Martin Spring	0	8/10/2019	REG	F	INIT	METALS	Boron	В	863	0.7	Int-Scr_95	16.2	53	15	μg/L	1	١	Q NC	2 5	SW-846:6010C	GELC	
XC4sc	r 71	80	1/10/20	00 29	.3 2	2690	139	57	Water Canyon	Intermediate Spring	Martin Spring	0	8/10/2019	REG	F	INIT	METALS	Iron	Fe	207	1.5	Int-Scr_95	54.1	3.8	30	μg/L	1	١	Q NC	2 5	SW-846:6010C	GELC	
XC4so	r 17	19	8/8/201	1 0.4	136 (0.19	0.161	19	Lower Los Alamos Canyon	Intermediate Spring	Vine Tree Spring	0	6/11/2019	REG	F	INIT	GENINORG	Bromide	Br(-1)	0.153	1	Int-Scr_95	0.0716	2.1	0.067	mg/L	1	J J	J_l	LAB E	EPA:300.0	GELC	

EM2019-0411 11 October 2019